Flow Visualization Experiments of Inclined Slot Jets with Negative Buoyancy

Author(s):  
Ilias G. Papakonstantis ◽  
Evgenia L. Mylonakou
2018 ◽  
Vol 844 ◽  
pp. 61-91 ◽  
Author(s):  
Weihua Li ◽  
Satish Kumar

The coating of discrete objects is an important but poorly understood step in the manufacturing of a broad variety of products. An important model problem is the flow of a thin liquid film on a rotating cylinder, where instabilities can arise and compromise coating uniformity. In this work, we use lubrication theory and flow visualization experiments to study the influence of surfactant on these flows. Two coupled evolution equations describing the variation of film thickness and concentration of insoluble surfactant as a function of time, the angular coordinate and the axial coordinate are solved numerically. The results show that surface-tension forces arising from both axial and angular variations in the angular curvature drive flows in the axial direction that tend to smooth out free-surface perturbations and lead to a stable speed window in which axial perturbations do not grow. The presence of surfactant leads to Marangoni stresses that can cause the stable speed window to disappear by driving flow that opposes the stabilizing flow. In addition, Marangoni stresses tend to reduce the spacing between droplets that form at low rotation rates, and reduce the growth rate of rings that form at high rotation rates. Flow visualization experiments yield observations that are qualitatively consistent with predictions from linear stability analysis and the simulation results. The visualizations also indicate that surfactants tend to suppress dripping, slow the development of free-surface perturbations, and reduce the shifting and merging of rings and droplets, allowing more time for solidifying coatings in practical applications.


1987 ◽  
Vol 65 (5) ◽  
pp. 1085-1090 ◽  
Author(s):  
Julianna M. Gal ◽  
R. W. Blake

Drag of the aquatic frog Hymenochirus boettgeri was investigated by a series of drop-tank and flow visualization experiments. The maximum drag coefficient (CD) of the body and hind limbs was 0.24–0.11, for a Reynolds number (Re) of 1500–8000. Results of the flow visualization experiment support the CD values obtained for the body and hind limbs of H. boettgeri. CD similarly measured for Rana pipiens was 0.060–0.050, for a Re range of 16 600 – 40 400. A comparison of CD under dynamically similar conditions suggests that jumping may not compromise swimming performance in these two species. CD for the foot of H. boettgeri was examined by three methods: drop-tank experiments with isolated frog's feet and with isolated acetate model feet, and a subtraction method. CD for the isolated foot was 2.5–1.6 for 100 < Re < 700. Results were similar to those obtained with isolated model feet, where 1.8 > CD > 1.2 for 300 < Re < 1300. The subtraction method gave similar results to those obtained from drop-tank experiments with isolated model and real feet, within the Re range of 300–3000. The results of all three methods and flow visualization experiments support the assumption that animal paddles can be treated as three-dimensional flat plates, oriented normal to the direction of flow.


Author(s):  
Brady Drew ◽  
John Charonko ◽  
Pavlos Vlachos

Entrainment characteristics of two-phase flow (liquid-gas) buoyant jets differ significantly from their single-phase flow counterparts. Past studies have not adequately described the mechanisms that cause the gas jet to entrain liquid from its surroundings and expand. In this work, Particle Image Velocimetry (PIV) and shadowgraph flow visualization experiments have been conducted on submerged round gas jets of varying speeds and nozzle diameters with the goal of improving our understanding of the processes of entrainment and expansion in a two-phase jet. We hypothesize that liquid is entrained into the gas column through (1) shear entrainment due to instabilities at the interface between the fast-moving gas jet and stagnant liquid, and (2) convective entrainment that occurs when the jet begins to pinch off and transform into a bubbly plume. The total entrainment estimated using the PIV measurements is higher than the respective values that single-phase buoyant jet theory suggests, especially at low jet speeds. This may be an effect of increased convective entrainment as the jet slows down. The shadowgraph flow visualization experiments provide valuable information pertaining to the structure of the jet and the interfacial dynamics.


1997 ◽  
Vol 119 (4) ◽  
pp. 839-843 ◽  
Author(s):  
D. L. Rhode ◽  
J. W. Johnson ◽  
D. H. Broussard

An improved understanding of a new category of stepped labyrinth seals, which feature a new “annular groove,” was obtained. A water leakage and flow visualization test facility of very large scale (relative to a typical seal) was utilized. Flow visualization experiments using a new method and digital facilities for capturing and editing digital images from an 8 mm video were conducted. The presence of an annular groove machined into the stator land increases the leakage resistance by up to 26 percent for the cases considered here. Tracer particles show the degree of throughflow path penetration into the annular groove (i.e., serpentining), which gives the largest and the smallest leakage resistance improvement over that of the corresponding conventional stepped seal.


2000 ◽  
Author(s):  
Paulo R. Souza Mendes ◽  
Mônica F. Naccache ◽  
Harry T. M. Vinagre

Abstract The performance of a typical numerical simulation for complex flows of viscoplastic materials was examined. The inertialess flow of viscoplastic materials through an axisymmetric channel formed by an abrupt expansion followed by a contraction was employed with this purpose. Flow visualization experiments were performed with a well characterized Carbopol aqueous solution. Numerical solutions of the mass and momentum balance equations were obtained, using the Generalized Newtonian Liquid model with a biviscosity function. The flow visualization results showed that the flow pattern is essentially Newtonian for large expansion lengths. For smaller expansion lengths, however, flow is observed only in an inner axisymmetric region whose diameter is approximately the same as the one of the inlet and outlet tubes. Outside this region the flow is stagnant, and a slip interface between these two regions seems to occur. The corresponding numerical solution was not capable of predicting the observed flow pattern.


1977 ◽  
Vol 19 (1) ◽  
pp. 38-41 ◽  
Author(s):  
T. J. Kotas

Using some simple assumptions with regard to the boundary conditions and confining the considerations to flows with small Rossby numbers, a pattern of streamlines corresponding to an axial plane of an incompressible vortex flow in a cylindrical vortex chamber is computed. The pattern obtained agrees qualitatively, in the main regions, with velocity profile measurements and dye-injection flow visualization experiments.


Sign in / Sign up

Export Citation Format

Share Document