Investigating the impact of injection-water salinity and well strategies on water mobility and oil production in an oil-wet reservoir

Author(s):  
Muhammad Jawad Khan ◽  
Temoor Muther ◽  
Hassan Aziz ◽  
Muhammad Mubeen-ur-Rehman
2017 ◽  
pp. 43-47
Author(s):  
D. V. Balin ◽  
T. V. Semenova

On the basis of flow modeling the impact of injectioninduced fracturing on the cumulative oil production value is examined in dependence of the oil and water mobility ratio under conditions of homogeneous and heterogeneous permeability of reservoir. It is established that the presence of injection-induced fracture in the near-wellbore area of the injection well can have a positive influenceon the dynamics of production fluid. Complex approach to estimation of probability of injection-induced fractures presence and algorithm of determination of their geometric parameters areal so proposed.


Author(s):  
Zuhair AlYousef ◽  
Subhash Ayirala ◽  
Majed Almubarak ◽  
Dongkyu Cha

AbstractGenerating strong and stable foam is necessary to achieve in-depth conformance control in the reservoir. Besides other parameters, the chemistry of injection water can significantly impact foam generation and stabilization. The tailored water chemistry was found to have good potential to improve foam stability. The objective of this study is to extensively evaluate the effect of different aqueous ions in the selected tailored water chemistry formulations on foam stabilization. Bulk and dynamic foam experiments were used to evaluate the impact of different tailored water chemistry aqueous ions on foam generation and stabilization. For bulk foam tests, the stability of foams generated using three surfactants and different aqueous ions was analyzed using bottle tests. For dynamic foam experiments, the tests were conducted using a microfluidic device. The results clearly demonstrated that the ionic content of aqueous solutions can significantly affect foam stabilization. The results revealed that the foam stabilization in bulk is different than that in porous media. Depending on the surfactant type, the divalent ions were found to have stronger influence on foam stabilization when compared to monovalent ions. The bulk foam results pointed out that the aqueous solutions containing calcium chloride salt (CaCl2) showed longer foam life with the anionic surfactant and very weak foam with the nonionic surfactant. The solutions with magnesium chloride (MgCl2) and CaCl2 salts displayed higher impact on foam stability in comparison with sodium chloride (NaCl) with the amphoteric alkyl amine surfactant. Less stable foams were generated with aqueous solutions comprising of both magnesium and calcium ions. In the microfluidic model, the solutions containing MgCl2 showed higher resistance to gas flow and subsequently higher mobility reduction factor for the injection gas when compared to those produced using NaCl and CaCl2 salts. This experimental study focusing about the role of different aqueous ions in the injection water on foam could help in better understanding the foam stabilization process. The new knowledge gained can also enable the selection and optimization of the right injection water chemistry and suitable chemicals for foam field applications.


2014 ◽  
Vol 17 (03) ◽  
pp. 304-313 ◽  
Author(s):  
A.M.. M. Shehata ◽  
M.B.. B. Alotaibi ◽  
H.A.. A. Nasr-El-Din

Summary Waterflooding has been used for decades as a secondary oil-recovery mode to support oil-reservoir pressure and to drive oil into producing wells. Recently, the tuning of the salinity of the injected water in sandstone reservoirs was used to enhance oil recovery at different injection modes. Several possible low-salinity-waterflooding mechanisms in sandstone formations were studied. Also, modified seawater was tested in chalk reservoirs as a tertiary recovery mode and consequently reduced the residual oil saturation (ROS). In carbonate formations, the effect of the ionic strength of the injected brine on oil recovery has remained questionable. In this paper, coreflood studies were conducted on Indiana limestone rock samples at 195°F. The main objective of this study was to investigate the impact of the salinity of the injected brine on the oil recovery during secondary and tertiary recovery modes. Various brines were tested including deionized water, shallow-aquifer water, seawater, and as diluted seawater. Also, ions (Na+, Ca2+, Mg2+, and SO42−) were particularly excluded from seawater to determine their individual impact on fluid/rock interactions and hence on oil recovery. Oil recovery, pressure drop across the core, and core-effluent samples were analyzed for each coreflood experiment. The oil recovery using seawater, as in the secondary recovery mode, was, on the average, 50% of original oil in place (OOIP). A sudden change in the salinity of the injected brine from seawater in the secondary recovery mode to deionized water in the tertiary mode or vice versa had a significant effect on the oil-production performance. A solution of 20% diluted seawater did not reduce the ROS in the tertiary recovery mode after the injection of seawater as a secondary recovery mode for the Indiana limestone reservoir. On the other hand, 50% diluted seawater showed a slight change in the oil production after the injection of seawater and deionized water slugs. The Ca2+, Mg2+, and SO42− ions play a key role in oil mobilization in limestone rocks. Changing the ion composition of the injected brine between the different slugs of secondary and tertiary recovery modes showed a measurable increase in the oil production.


2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.


2021 ◽  
Author(s):  
Gaurav Modi ◽  
Manu Ujjwal ◽  
Srungeer Simha

Abstract Short Term Injection Re-distribution (STIR) is a python based real-time WaterFlood optimization technique for brownfield assets that uses advanced data analytics. The objective of this technique is to generate recommendations for injection water re-distribution to maximize oil production at the facility level. Even though this is a data driven technique, it is tightly bounded by Petroleum Engineering principles such as material balance etc. The workflow integrates and analyse short term data (last 3-6 months) at reservoir, wells and facility level. STIR workflow is divided into three modules: Injector-producer connectivity Injector efficiency Injection water optimization First module uses four major data types to estimate the connectivity between each injector-producer pair in the reservoir: Producers data (pressure, WC, GOR, salinity) Faults presence Subsurface distance Perforation similarity – layers and kh Second module uses connectivity and watercut data to establish the injector efficiency. Higher efficiency injectors contribute most to production while poor efficiency injectors contribute to water recycling. Third module has a mathematical optimizer to maximize the oil production by re-distributing the injection water amongst injectors while honoring the constraints at each node (well, facility etc.) of the production system. The STIR workflow has been applied to 6 reservoirs across different assets and an annual increase of 3-7% in oil production is predicted. Each recommendation is verified using an independent source of data and hence, the generated recommendations align very well with the reservoir understanding. The benefits of this technique can be seen in 3-6 months of implementation in terms of increased oil production and better support (pressure increase) to low watercut producers. The inherent flexibility in the workflow allows for easy replication in any Waterflooded Reservoir and works best when the injector well count in the reservoir is relatively high. Geological features are well represented in the workflow which is one of the unique functionalities of this technique. This method also generates producers bean-up and injector stimulation candidates opportunities. This low cost (no CAPEX) technique offers the advantages of conventional petroleum engineering techniques and Data driven approach. This technique provides a great alternative for WaterFlood management in brownfield where performing a reliable conventional analysis is challenging or at times impossible. STIR can be implemented in a reservoir from scratch in 3-6 weeks timeframe.


2018 ◽  
Author(s):  
Amba Ndoma Egba ◽  
Joseph A. Ajienka ◽  
Omowumi O. Iledare
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document