scholarly journals Effects of Cranial Radiation on Structural and Functional Brain Development in Pediatric Brain Tumors

2015 ◽  
Vol 2 (1-2) ◽  
pp. 3-13 ◽  
Author(s):  
Jesse C. Bledsoe
2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 20023-20023
Author(s):  
M. M. Abdel Wahab ◽  
H. Hussien ◽  
K. M. Maher

20023 Purpose: To evaluate the delayed adverse changes in neuro-cognitive functions as well as white matter damage in radiated survivors of pediatric brain tumors. Methods: Forty two children (22 males) with primary brain tumors who were only treated with cranial radiation, were recruited. 28 patients were treated for low risk medulloblastoma, 10 patients for low grade astrocytoma, 3 patients for low grade ependymoma, and 1 patient for craniopharyngioma. Their ages ranged from 3 to 18 years (mean 10.3±3.98 years).They were subjected, initially just before radiotherapy and at follow-up 1–2 year after completion of cranial radiation, to serial clinical and neuropsychological assessments including Wechseler Intelligence Scale for Children, Vineland social maturity test, Benton Visual Memory Test, and Revised Behavior Problem Checklist. Magnetic resonance scans were also performed to detect the presence of white matter damage before radiotherapy and at follow up. Results: Initially, after surgery and before radiation, intelligence test scores were below normal scores for age and this was of high statistical significance (Total IQ: t= -3.02, P= 0.006). Visual memory test showed evidence of organicity in all cases. Social maturity showed a statistically significant decline as well (t= -2.11, P= 0.04). Follow-up after radiotherapy showed further decline with high statistical significance (Total IQ t= 3.228, P=0.003; visual memory t= 4.08, P= 0.001); An attentional problem has emerged (t= -6.12, P= 0.00). Both radiation dose and volume of radiation showed negative and statistically significant correlation with IQ. Age at diagnosis correlated positively and significantly with IQ ( r= 0.601, P=0.001). Multiple linear regression showed impaired neurocognitive function which was correlated with the degree of white matter damage. (standardized B= -0.577, P= 0.001) and young age at diagnosis (standardized B= -0.427, P= 0.014). Conclusions: Cranial radiation in pediatric brain tumors is associated with a decline in multiple neurocognitive functions including total IQ, visual memory, and attention; which are related to the toxic effect of cranial radiation on white matter of the brain especially in young age of childhood with high dose and whole cranial radiation. No significant financial relationships to disclose.


2017 ◽  
Vol 33 (6) ◽  
pp. 965-972 ◽  
Author(s):  
Arif Rashid ◽  
Ashwin N. Ram ◽  
Wendy R. Kates ◽  
Kristin J. Redmond ◽  
Moody Wharam ◽  
...  

2017 ◽  
Vol 33 (12) ◽  
pp. 2215-2215
Author(s):  
Arif Rashid ◽  
Ashwin N. Ram ◽  
Wendy R. Kates ◽  
Kristin J. Redmond ◽  
Moody Wharam ◽  
...  

2015 ◽  
Vol 20 (3-4) ◽  
pp. 271-299 ◽  
Author(s):  
Adam M. Fontebasso ◽  
Nada Jabado

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiqun Zhang ◽  
Fengju Chen ◽  
Lawrence A. Donehower ◽  
Michael E. Scheurer ◽  
Chad J. Creighton

AbstractThe global impact of somatic structural variants (SSVs) on gene expression in pediatric brain tumors has not been thoroughly characterised. Here, using whole-genome and RNA sequencing from 854 tumors of more than 30 different types from the Children’s Brain Tumor Tissue Consortium, we report the altered expression of hundreds of genes in association with the presence of nearby SSV breakpoints. SSV-mediated expression changes involve gene fusions, altered cis-regulation, or gene disruption. SSVs considerably extend the numbers of patients with tumors somatically altered for critical pathways, including receptor tyrosine kinases (KRAS, MET, EGFR, NF1), Rb pathway (CDK4), TERT, MYC family (MYC, MYCN, MYB), and HIPPO (NF2). Compared to initial tumors, progressive or recurrent tumors involve a distinct set of SSV-gene associations. High overall SSV burden associates with TP53 mutations, histone H3.3 gene H3F3C mutations, and the transcription of DNA damage response genes. Compared to adult cancers, pediatric brain tumors would involve a different set of genes with SSV-altered cis-regulation. Our comprehensive and pan-histology genomic analyses reveal SSVs to play a major role in shaping the transcriptome of pediatric brain tumors.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii459-iii459
Author(s):  
Takashi Mori ◽  
Shigeru Yamaguchi ◽  
Rikiya Onimaru ◽  
Takayuki Hashimoto ◽  
Hidefumi Aoyama

Abstract BACKGROUND As the outcome of pediatric brain tumors improves, late recurrence and radiation-induced tumor cases are more likely to occur, and the number of cases requiring re-irradiation is expected to increase. Here we report two cases performed intracranial re-irradiation after radiotherapy for pediatric brain tumors. CASE 1: 21-year-old male. He was diagnosed with craniopharyngioma at eight years old and underwent a tumor resection. At 10 years old, the local recurrence of suprasellar region was treated with 50.4 Gy/28 fr of stereotactic radiotherapy (SRT). After that, other recurrent lesions appeared in the left cerebellopontine angle, and he received surgery three times. The tumor was gross totally resected and re-irradiation with 40 Gy/20 fr of SRT was performed. We have found no recurrence or late effects during the one year follow-up. CASE 2: 15-year-old female. At three years old, she received 18 Gy/10 fr of craniospinal irradiation and 36 Gy/20 fr of boost to the posterior fossa as postoperative irradiation for anaplastic ependymoma and cured. However, a anaplastic meningioma appeared on the left side of the skull base at the age of 15, and 50 Gy/25 fr of postoperative intensity-modulated radiation therapy was performed. Two years later, another meningioma developed in the right cerebellar tent, and 54 Gy/27 fr of SRT was performed. Thirty-three months after re-irradiation, MRI showed a slight increase of the lesion, but no late toxicities are observed. CONCLUSION The follow-up periods are short, however intracranial re-irradiation after radiotherapy for pediatric brain tumors were feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document