Surface Waves in a Viscoelastic Liquid Half-Space Under Initial Stress in Presence of Thermal and Magnetic Field

2016 ◽  
Vol 3 (2) ◽  
pp. 1449-1467
Author(s):  
Rajeev Ghatuary ◽  
Nilratan Chakraborty
2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 285-299
Author(s):  
Jamel Bouslimi ◽  
Sayed Abo-Dahab ◽  
Khaled Lotfy ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
...  

In this paper is investigating the theory of generalized thermoelasticity under two temperature is used to solve boundary value problems of 2-D half-space its bound?ary with different types of heating under gravity effect. The governing equations are solved using new mathematical methods under the context of Lord-Shulman, Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves?tigate the surface waves in an isotropic elastic medium subjected to gravity field, magnetic field, and initial stress. The general solution obtained is applied to a spe?cific problem of a half-space and the interaction with each other under the influence of gravity. The physical domain by using the harmonic vibrations is used to obtain the exact expressions for the Waves velocity and attenuation coefficients for Stoneley waves, Love waves, and Rayleigh waves. Comparisons are made with the results between the three theories. Numerical work is also performed for a suitable material with the aim of illustrating the results. The results obtained are calculated numerical?ly and presented graphically with some comparisons in the absence and the presence the influence of gravity, initial stress and magnetic field. It clears that the results ob?tained agree with the physical practical results and agree with the previous results if the gravity, two temperature, and initial stress neglect as special case from this study.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 285-299
Author(s):  
Jamel Bouslimi ◽  
Sayed Abo-Dahab ◽  
Khaled Lotfy ◽  
Sayed Abdel-Khalek ◽  
Eied Khalil ◽  
...  

In this paper is investigating the theory of generalized thermoelasticity under two temperature is used to solve boundary value problems of 2-D half-space its bound?ary with different types of heating under gravity effect. The governing equations are solved using new mathematical methods under the context of Lord-Shulman, Green-Naghdi theory of type III (G-N III) and the three-phase-lag model to inves?tigate the surface waves in an isotropic elastic medium subjected to gravity field, magnetic field, and initial stress. The general solution obtained is applied to a spe?cific problem of a half-space and the interaction with each other under the influence of gravity. The physical domain by using the harmonic vibrations is used to obtain the exact expressions for the Waves velocity and attenuation coefficients for Stoneley waves, Love waves, and Rayleigh waves. Comparisons are made with the results between the three theories. Numerical work is also performed for a suitable material with the aim of illustrating the results. The results obtained are calculated numerical?ly and presented graphically with some comparisons in the absence and the presence the influence of gravity, initial stress and magnetic field. It clears that the results ob?tained agree with the physical practical results and agree with the previous results if the gravity, two temperature, and initial stress neglect as special case from this study.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
S. M. Abo-Dahab ◽  
Kh. Lotfy ◽  
A. Gohaly

The aim of the present investigation is to study the effects of magnetic field, relaxation times, and rotation on the propagation of surface waves with imperfect boundary. The propagation between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half-space with rotation in the context of Green-Lindsay (GL) model is studied. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velocity and attenuation coefficient are obtained for stiffness, and then deduced for normal stiffness, tangential stiffness and welded contact. The amplitudes of displacements, temperature, and concentration are computed analytically at the free plane boundary. Some special cases are illustrated and compared with previous results obtained by other authors. The effects of rotation, magnetic field, and relaxation times on the speed, attenuation coefficient, and the amplitudes of displacements, temperature, and concentration are displayed graphically.


Author(s):  
S.M. Abo-Dahab ◽  
A. Abd-Alla ◽  
araby kilany

A unified mathematical model of three-phase-lag in a compressed rotating isotropic homogeneous micropolar thermo-viscoelastic medium based on a ramp type thermal shock is developed. An application of this model is carried out to resolve the problem of a perfectly conducting half-space subjected to certain boundary conditions in the presence of an electromagnetic field. Lame’s potentials and normal mode analysis techniques are employed to get the general analytical solutions. Specific attention is paid to explore the impact of the rotation, magnetic field, ramp time, as well as initial stress on the distributions of temperature, displacement, stress, and induced electric and magnetic distribution. The findings show that the impact of the rotation, magnetic field, viscous, ramp parameter, initial stress, and phase-lag on the micropolar thermo-viscoelastic medium is noticeable.


2011 ◽  
Vol 03 (04) ◽  
pp. 633-665 ◽  
Author(s):  
P. SAXENA ◽  
R. W. OGDEN

Rayleigh-type surface waves propagating in an incompressible isotropic half-space of nonconducting magnetoelastic material are studied for a half-space subjected to a finite pure homogeneous strain and a uniform magnetic field. First, the equations and boundary conditions governing linearized incremental motions superimposed on an initial motion and underlying electromagnetic field are derived and then specialized to the quasimagnetostatic approximation. The magnetoelastic material properties are characterized in terms of a "total" isotropic energy density function that depends on both the deformation and a Lagrangian measure of the magnetic induction. The problem of surface wave propagation is then analyzed for different directions of the initial magnetic field and for a simple constitutive model of a magnetoelastic material in order to evaluate the combined effect of the finite deformation and magnetic field on the surface wave speed. It is found that a magnetic field in the considered (sagittal) plane in general destabilizes the material compared with the situation in the absence of a magnetic field, and a magnetic field applied in the direction of wave propagation is more destabilizing than that applied perpendicular to it.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Sunita Deswal ◽  
Sandeep Singh Sheoran ◽  
Kapil Kumar Kalkal

The aim of this paper is to study magneto-thermoelastic interactions in an initially stressed isotropic homogeneous half-space in the context of fractional order theory of generalized thermoelasticity. State space formulation with the Laplace transform technique is used to obtain the general solution, and the resulting formulation is applied to the ramp type increase in thermal load and zero stress. Solutions of the problem in the physical domain are obtained by using a numerical method of the Laplace inverse transform based on the Fourier expansion technique, and the expressions for the displacement, temperature, and stress inside the half-space are obtained. Numerical computations are carried out for a particular material for illustrating the results. Results obtained for the field variables are displayed graphically. Some comparisons have been shown in figures to present the effect of fractional parameter, ramp parameter, magnetic field, and initial stress on the field variables. Some particular cases of special interest have been deduced from the present investigation.


Author(s):  
Augustine Igwebuike Anya ◽  
M.W. Akhtar ◽  
Syed Muhammad Abo-Dahab ◽  
Hajra Kaneez ◽  
Aftab Khan ◽  
...  

AbstractThe present study deals with the reflection of SV-waves at a free surface in the presence of magnetic field, initial stress, voids and gravity. When an SV-wave incident on the free surface of an elastic half space, two damped P-waves and an SV-wave are reflected. Among these waves, P-waves are only affected by magnetic fields whereas SV-waves are influenced by both, initial stress and magnetic fields. Effect of gravity is negligible whereas voids played a significant role. These observations can be helpful for seismology and earthquake sciences.


2017 ◽  
Vol 47 (4) ◽  
pp. 48-74 ◽  
Author(s):  
Manoj K. Singh ◽  
Sanjeev A. Sahu

AbstractAn analytical model is presented to study the behaviour of propagation of torsional surface waves in initially stressed porous layer, sandwiched between an orthotropic half-space with initial stress and pre-stressed inhomogeneous anisotropic half-space. The boundary surfaces of the layer and halfspaces are taken as corrugated, as well as loosely bonded. The heterogeneity of the lower half-space is due to trigonometric variation in elastic parameters of the pre-stressed inhomogeneous anisotropic medium. Expression for dispersion relation has been obtained in closed form for the present analytical model to observe the effect of undulation parameter, flatness parameter and porosity on the propagation of torsional surface waves. The obtained dispersion relation is found to be in well agreement with classical Love wave equation for a particular case. The cases of ideally smooth interface and welded interface have also been analysed. Numerical example and graphical illustrations are made to demonstrate notable effect of initial stress, wave number, heterogeneity parameter and initial stress on the phase velocity of torsional surface waves.


Sign in / Sign up

Export Citation Format

Share Document