scholarly journals Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanming Wang ◽  
Xue Wang ◽  
Xiaolong Li ◽  
Rong Liu ◽  
Yang Bai ◽  
...  

AbstractThe restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature, portable, wearable or implantable electronic devices. A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement. The introduction of spacers such as graphene, CNTs, cellulose and the like demonstrates limited enhancement in rate capability. The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene, leading to low volumetric capacitance. Therefore, it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials. Herein, for the first time, high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films. In the composites, MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution. As a result, the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance (1817 F cm−3 and 545 F g−1), but also maintains good rate capability and excellent flexibility. Moreover, the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L−1 (13.4 Wh kg−1), rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.

2016 ◽  
Vol 4 (1) ◽  
pp. 71-90 ◽  
Author(s):  
Jie Wang ◽  
Shengyang Dong ◽  
Bing Ding ◽  
Ya Wang ◽  
Xiaodong Hao ◽  
...  

Abstract Among various energy-storage devices, electrochemical capacitors (ECs) are prominent power provision but show relatively low energy density. One way to increase the energy density of ECs is to move from carbon-based electric double-layer capacitors to pseudocapacitors, which manifest much higher capacitance. However, compared with carbon materials, the pseudocapacitive electrodes suffer from high resistance for electron and/or ion transfer, significantly restricting their capacity, rate capability and cyclability. Rational design of electrode materials offers opportunities to optimize their electrochemical performance, leading to devices with high energy density while maintaining high power density. This paper reviews the different approaches of electrodes striving to advance the energy and power density of ECs.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


2019 ◽  
Vol 7 (29) ◽  
pp. 17581-17593 ◽  
Author(s):  
Zhiqian Cao ◽  
Haibo Hu ◽  
Mingzai Wu ◽  
Kun Tang ◽  
Tongtong Jiang

Planar all-solid-state rechargeable Zn–air batteries with superior energy efficiency demonstrate a novel design for compact all-solid-state rechargeable ZABs towards next-generation wearable energy storage devices with high energy density and safety.


2018 ◽  
Vol 6 (4) ◽  
pp. 1403-1411 ◽  
Author(s):  
Junwei Yang ◽  
Haian Xie ◽  
Hao Chen ◽  
Zhuqun Shi ◽  
Tao Wu ◽  
...  

Flexible and eco-friendly dielectric materials with high energy density and breakdown strength have promising applications in energy storage devices.


Author(s):  
Patrice Simon ◽  
Yury Gogotsi

Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.


2021 ◽  
Author(s):  
Shuqiang Jiao ◽  
Xuefeng Zhang ◽  
Wei-li Song ◽  
Mingyong Wang ◽  
Jiguo Tu ◽  
...  

Abstract Aqueous aluminum-ion batteries (AAIBs) are potential candidates for large-scale energy storage devices for their advantages of high energy density, resource abundance, low cost, safety, and environmental friendliness. Due to various redox procedures, good reversibility, and high discharge potential, the aqueous aluminum-manganese oxide battery has drawn wide attention, while the critical issues induced from slow kinetics and undesired soluble Mn2+ lead to slow charging, poor rate capability, and low energy density. However, there is very limited progress for performance improvement via conventional chemical or physical modification approaches. To overcome these challenges, an efficient photo-regulation strategy has been proposed in terms of direct radiating visible light on the cell during the galvanostatic charging and discharging. The efficient separation and transmission of photoelectrons in the photo positive electrode dramatically improves the dynamics, and fast charging and enhanced rate performance could be achieved. Photo-oxidation behavior can effectively promote the conversion of soluble Mn2+, thus further enhancing the energy density of the as-assembled aluminum-manganese battery. Furthermore, a photo-conversion efficiency of up to 1.2% has been acquired. Based on the photo-regulation strategy, the mechanism of the photoelectrochemical coupling system has been understood, which opens a promising route for achieving photoelectrochemical batteries with high energy density and fast charge.


Sign in / Sign up

Export Citation Format

Share Document