scholarly journals Preparation and bioactive surface modification of the microwave sintered porous Ti-15Mo alloys for biomedical application

2017 ◽  
Vol 61 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Jilin Xu ◽  
Jinlong Zhang ◽  
Luzi Bao ◽  
Tao Lai ◽  
Junming Luo ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2896
Author(s):  
Sara Ferraris ◽  
Silvia Spriano ◽  
Alessandro Calogero Scalia ◽  
Andrea Cochis ◽  
Lia Rimondini ◽  
...  

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1059
Author(s):  
Patricia Capellato ◽  
Daniela Sachs ◽  
Lucas V. B. Vasconcelos ◽  
Miriam M. Melo ◽  
Gilbert Silva ◽  
...  

The current metallic biomaterial still presents failures associated with the bulk alloy and the interface of material/human body. In previous studies, titanium alloy with tantalum showed the elastic modulus decrease in comparison with that of commercially pure (cp) titanium. In this study, surface modification on Ti-30Ta alloy was investigated. Titanium and tantalum were melted, homogenized, cold-worked by a rotary swaging process and solubilized. The anodization process was performed in electrolyte contained glycerol + NH4F 0.25% at 30 V using seven different durations—4 h, 5 h, 6 h, 7 h, 8 h, 9 h, and 10 h and annealed at 530 °C for 1 h. The surface topography was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) measurements, X-ray diffraction analysis (XRD), and contact angle. From the results, we conclude the time of anodization process influences the shape and morphology of the anodized layer. The 5 h-anodization process produced a smooth and porous surface. The 4-, 6-, 7-, 8-, 9-, and 10-h conditions showed nanotubes morphology. All surfaces are hydrophilic (<90°). Likewise, all the investigated conditions present anatase phase. So, this surface modification presents potential for biomedical application. However, more work needs to be done to better understand the influence of time on the anodization process.


2020 ◽  
Vol 21 (10) ◽  
pp. 3628
Author(s):  
Yu-Min Huang ◽  
Chih-Chieh Huang ◽  
Pei-I Tsai ◽  
Kuo-Yi Yang ◽  
Shin-I Huang ◽  
...  

The interference screw fixation method is used to secure a graft in the tibial tunnel during anterior cruciate ligament reconstruction surgery. However, several complications have been reported, such as biodegradable screw breakage, inflammatory or foreign body reaction, tunnel enlargement, and delayed graft healing. Using additive manufacturing (AM) technology, we developed a titanium alloy (Ti6Al4V) interference screw with chemically calcium phosphate surface modification technology to improve bone integration in the tibial tunnel. After chemical and heat treatment, the titanium screw formed a dense apatite layer on the metal surface in simulated body fluid. Twenty-seven New Zealand white rabbits were randomly divided into control and additive manufactured (AMD) screw groups. The long digital extensor tendon was detached and translated into a tibial plateau tunnel (diameter: 2.0 mm) and transfixed with an interference screw while the paw was in dorsiflexion. Biomechanical analyses, histological analyses, and an imaging study were performed at 1, 3, and 6 months. The biomechanical test showed that the ultimate pull-out load failure was significantly higher in the AMD screw group in all tested periods. Micro-computed tomography analyses revealed early woven bone formation in the AMD screw group at 1 and 3 months. In conclusion, AMD screws with bioactive surface modification improved bone ingrowth and enhanced biomechanical performance in a rabbit model.


Sign in / Sign up

Export Citation Format

Share Document