scholarly journals Recent progress in periodic patterning fabricated by self-assembly of colloidal spheres for optical applications

2020 ◽  
Vol 63 (8) ◽  
pp. 1418-1437 ◽  
Author(s):  
Jing Liu ◽  
Xingang Zhang ◽  
Wenqing Li ◽  
Changzhong Jiang ◽  
Ziyu Wang ◽  
...  
2021 ◽  
pp. 2100283
Author(s):  
Bing‐Bing Guo ◽  
Jia‐Cheng Yin ◽  
Na Li ◽  
Zi‐Xuan Fu ◽  
Xiao Han ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


Author(s):  
Zhen Luo ◽  
Yujuan Gao ◽  
Zhongyu Duan ◽  
Yu Yi ◽  
Hao Wang

Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.


2020 ◽  
Vol 56 (60) ◽  
pp. 8342-8354
Author(s):  
Shuying Yang ◽  
Lingxiang Jiang

This article summarizes recent progress on biomimetic subcellular structures and discusses integration of these isolated systems.


2007 ◽  
Vol 31 ◽  
pp. 117-119
Author(s):  
Li Gao ◽  
Qing Feng Yan ◽  
C.C. Wong ◽  
Yet Ming Chiang

Convective self-assembly of colloidal spheres provides a simple method for fabricating two and three dimensional colloidal crystals. In this work, we investigated the layer transitions phenomena during colloidal self-assembly in a sessile drop by using an in-situ videoscopic set-up. The effects of surface charge, colloidal concentration, and surfactant additions were examined. The results show that the chemical environment plays an important role in colloidal self-assembly. In the case of ordered growth, different layer transition phenomena were observed when the colloidal concentration is different.


2015 ◽  
Vol 44 (3) ◽  
pp. 815-832 ◽  
Author(s):  
Peifa Wei ◽  
Xuzhou Yan ◽  
Feihe Huang

This review describes recent progress in the orthogonal construction of supramolecular polymers based on host–guest and metal coordination interactions.


Small ◽  
2009 ◽  
Vol 5 (16) ◽  
pp. 1846-1849 ◽  
Author(s):  
Hai-Xia Zhang ◽  
Hong Zhao ◽  
Jie-Xin Wang ◽  
Jian-Feng Chen ◽  
Yun-Feng Lu ◽  
...  

2016 ◽  
Vol 2 (9) ◽  
pp. e1600932 ◽  
Author(s):  
Chenhui Peng ◽  
Taras Turiv ◽  
Yubing Guo ◽  
Sergij V. Shiyanovskii ◽  
Qi-Huo Wei ◽  
...  

Colloids self-assemble into various organized superstructures determined by particle interactions. There is tremendous progress in both the scientific understanding and the applications of self-assemblies of single-type identical particles. Forming superstructures in which the colloidal particles occupy predesigned sites and remain in these sites despite thermal fluctuations represents a major challenge of the current state of the art. We propose a versatile approach to directing placement of colloids using nematic liquid crystals with spatially varying molecular orientation preimposed by substrate photoalignment. Colloidal particles in a nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, whereas spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. Control of colloidal self-assembly through patterned molecular orientation opens new opportunities for designing materials and devices in which particles should be placed in predesigned locations.


Sign in / Sign up

Export Citation Format

Share Document