scholarly journals Water assessment in transboundary river basins: the case of the Medjerda River Basin

2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Andrianirina Sedera Rajosoa ◽  
Chérifa Abdelbaki ◽  
Khaldoon A. Mourad

AbstractWater resources in the Middle East and North Africa (MENA region) face over-exploitation and over-pollution due to population growth, climate change and the lack of advanced water governance approaches. These challenges become more serious in transboundary river basins and may lead to conflict between riparian countries. The main objective of this paper is to assess water resources and needs at the Medjerda River Basin (MRB), shared by Tunisia and Algeria using the Water Evaluation and Planning (WEAP) system between 2020 and 2050. Four scenarios were built to assess the current and future status of the water supply and demands in both countries. The results show that water demands, and shortages are increasing, and some demand sites will face real water scarcity in the future due to climate change and development practices. Therefore, new allocation and management plans should be examined at the regional level based on real collaboration among all stakeholders.

2019 ◽  
Vol 69 ◽  
pp. 162-172 ◽  
Author(s):  
Shlomi Dinar ◽  
David Katz ◽  
Lucia De Stefano ◽  
Brian Blankespoor

2017 ◽  
Vol 21 (12) ◽  
pp. 6275-6288 ◽  
Author(s):  
Hassaan Furqan Khan ◽  
Y. C. Ethan Yang ◽  
Hua Xie ◽  
Claudia Ringler

Abstract. There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural–human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food–water–energy–environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco-hydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.


Author(s):  
Zhiying Shao ◽  
Fengping Wu ◽  
Fang Li ◽  
Yue Zhao ◽  
Xia Xu

With the rapid development of social economy and global climate warming, scarce transboundary water resources, as one of the basic resources for socio-economic development, have increasingly become the focus of basin countries. To investigate the socio-economic impacts of different water diversion quantity from transboundary river basins, we used a system dynamics (SD) model to reflect interactions between population, water resources, and socio-economic development, and applied it to a case study in Xinjiang to simulate its change tendency from 2011 to 2030 from the temporal dimension. Then, four water diversion quantity of transboundary river basins and four alternative socio-economic development patterns were designed to comprehensively evaluate these impacts of water diversion quantity change on the socio-economy of the region along the river under different socio-economic development patterns. The results indicate that (1) there was a positive correlation between water diversion quantity and the economic output value of the region along transboundary river basins, and the marginal benefit of transboundary water resources would decrease gradually; (2) considering the difficulty of water diversion from transboundary river basins and the protection of downstream water use and ecological health of transboundary river basins, we believe that increasing the transboundary water resources by 20% was more conducive to the sustainable development of Xinjiang’s socio-economy; (3) through the comparison of dynamic evolutions of socio-economic development and water impacts under four socio-economic development patterns, it is best for Xinjiang to plan its future development in the coordinated development of economic-resource scenario. Following this scenario, not only would the total output value of the socio-economy be better than other scenarios, but this also helps to alleviate the contradiction between the water supply and demand, which expected there would be a water shortage of 1.04 billion m3 in 2029 under 20% increase in water diversion quantity. Therefore, appropriate water diversion quantity, reasonable adjustment of industrial production growth rate, reduction of water consumption quotas of different industries and domestic water quota, and improvement of collection and treatment rate for sewage should be given priority in water resources management decision-making in Xinjiang or other arid regions along transboundary river basins.


2019 ◽  
Vol 11 (3) ◽  
pp. 762 ◽  
Author(s):  
Anabel Sanchez-Plaza ◽  
Annelies Broekman ◽  
Pilar Paneque

Projections indicate that the Mediterranean region is an area where drastic changes in climate will occur, which will significantly affect water resources. In a context of increasing pressure on water resources as a result of the reduction in water availability, it is essential and urgent to structure water management in a way that allows for adaptation to the challenges that the changing climate will bring to an already water scarce region. It is necessary to generate experiences and methodologies that are based on real case studies that will lay the foundations for the generalisation of practices of climate change adaptation in water management. In this study, we have developed a ready to use analytical framework to evaluate the coherence of water management plans and programs with climate change adaptation principles. We have tested the applicability of the framework that was developed on the Tordera River Basin Adaptation Plan (TRBAP). The analytical framework has proven to be easy to apply and to allow for identifying the inclusion or exclusion of key climate change adaptation features appropriately. We have structured this analytical framework as a starting point contributing to further assessments of how climate change adaptation is incorporated in water management.


Sign in / Sign up

Export Citation Format

Share Document