Optimization of selective laser sintering process parameters to achieve the maximum density and hardness in polyamide parts

2017 ◽  
Vol 2 (1-2) ◽  
pp. 19-30 ◽  
Author(s):  
Sharanjit Singh ◽  
Anish Sachdeva ◽  
Vishal S. Sharma
2010 ◽  
Vol 43 ◽  
pp. 430-433
Author(s):  
Nai Fei Ren ◽  
Pan Wang ◽  
Yan Luo ◽  
Hui Juan Wu

The dimensional accuracy and mechanics properties of parts made by Selective Laser Sintering depend greatly on the sintering process parameters. The influence of process parameters on warping weight of parts sintered by blends of polyamide (PA12) and high density polyethylene (HDPE) was studied. The relationship between the process parameters and the warping height was presented. The surface morphology of the part and uniformity of powder mixed were analyzed by SEM. The optimum parameters of minimum warping height were obtained: preheat temperature 110°C, scan speed 300mm/s, laser power 21W, thickness of single layer 0.2mm.


Author(s):  
M. Akilesh ◽  
P. R. Elango ◽  
A. Achith Devanand ◽  
R. Soundararajan ◽  
P. Ashoka Varthanan

2010 ◽  
Vol 148-149 ◽  
pp. 511-514 ◽  
Author(s):  
Bin Liu ◽  
Pei Kang Bai ◽  
Yu Xin Li

A multi-component polymer-coated molybdenum powder was chosen for selective laser sintering (SLS). A novel preparing method of polymer-coated molybdenum powder was presented. The effect of the process parameters on the part’s characteristics is investigated. Based on our study for dynamic laser sintering process of polymer-coated molybdenum powder, its laser sintering mechanism was reported as follows: at the early stage of laser sintering, the viscous flow is the major mechanism; during the laser sintering, the melting/solidification is the major mechanism. Furthermore, a model corresponding to the mechanism was discussed schematically, which could be used to explain the material migrating mode during laser sintering process.


Mechanik ◽  
2016 ◽  
pp. 1196-1197
Author(s):  
Barbara Staniewicz-Brudnik ◽  
Andrzej Stwora ◽  
Małgorzata Karolus ◽  
Grzegorz Skrabalak ◽  
Elżbieta Bączek

2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2018 ◽  
Vol 8 (12) ◽  
pp. 2383 ◽  
Author(s):  
Zhehan Chen ◽  
Xianhui Zong ◽  
Jing Shi ◽  
Xiaohua Zhang

Selective laser sintering (SLS) is an additive manufacturing technology that can work with a variety of metal materials, and has been widely employed in many applications. The establishment of a data correlation model through the analysis of temperature field images is a recognized research method to realize the monitoring and quality control of the SLS process. In this paper, the key features of the temperature field in the process are extracted from three levels, and the mathematical model and data structure of the key features are constructed. Feature extraction, dimensional reduction, and parameter optimization are realized based on principal component analysis (PCA) and support vector machine (SVM), and the prediction model is built and optimized. Finally, the feasibility of the proposed algorithms and model is verified by experiments.


Sign in / Sign up

Export Citation Format

Share Document