A parametric determination of bending and Charpy’s impact strength of ABS and ABS-plus fused deposition modeling specimens

2019 ◽  
Vol 4 (3) ◽  
pp. 323-330 ◽  
Author(s):  
N. Vidakis ◽  
M. Petousis ◽  
A. Vairis ◽  
K. Savvakis ◽  
A. Maniadi
2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2017 ◽  
Vol 756 ◽  
pp. 88-95
Author(s):  
Ema Nováková-Marcinčinová ◽  
Anton Panda ◽  
Ľudmila Nováková-Marcinčinová

The article focuses on the samples production of organic material PLA-PolyLacticAcid – bioplastic. The main part describes the experimental testing of PolyLacticAcid plastic and sample production by Fused Deposition Modeling, Rapid Prototyping technology. The article presents selected carried out tests of mechanical properties focused mainly on the determination of ultimate tensile strength of two PLA-BIO plastic extruded horizontally along the width produced by FDM method, Rapid Prototyping. The authors of this article present their results of test materials in the form of measurement protocols recorded in software, the measured values in a static tensile test, recorded in tables and shown in work graphs. Based on the results of the two samples produced from PLA biomaterials and compared to determine which PLA – bioplastic is stronger.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2272
Author(s):  
Jiwon In ◽  
Haeun Jeong ◽  
Sanghoon Song ◽  
Sea C. Min

The material requirements for printing gel food with a fused deposition modeling 3D printer were determined based on fidelity, shape retention, and extrudability, as described by the rheological parameters of storage modulus (G’), yield stress (τ0), and phase angle (δ). The material requirements were determined for printing gel food using three formulations containing gelatin, gelatin and pectin, and gum mixture as the gelling agents. As compared with formulations based on gelatin alone, pectin-containing gelatin-based formulations yielded higher δ and lower G’ and τ0 values, while gum mixture-based formulations formed a gel with higher G’ and δ values and a wider range of τ0. Overall, this study presents quantitative material requirements for printing gel products containing gelatin, gelatin–pectin, and gum mixtures.


2020 ◽  
Vol 5 (2) ◽  
pp. 057-062
Author(s):  
Juraj Beniak ◽  
Miloš Matúš ◽  
Ľubomír Šooš ◽  
Peter Križan

The aim of using additive manufacturing technologies is to be able to produce a wide range of component designs on a single device, using a wide range of materials and minimizing material consumption. There are several technologies that work on different principles. The present article is focused on Fused Deposition Modeling (FDM) technology, which is focused on the application of layers of semi-molten polymer. The advantage is the lower cost for obtaining of FDM device, but also the low operation cost. The output of production are complex components designed for prototyping, but also for final use. Due to the fact that there is requirement to produce parts also for final use, it is necessary to know the strength properties of the parts after production. Because the structure of parts volume is not homogeneous, it is not possible to subject it to conventional calculations and simulations, but it is necessary to take into account the specifics that are produced during production by FDM technology. The present paper shows the results of experimental determination of the tensile strength of manufactured parts. A series of samples with different properties was used on the FDM device and the tensile strength of the components was subsequently measured. The measured values ​​were compared and evaluated.


Author(s):  
J. Santhakumar ◽  
Rishabh Maggirwar ◽  
Srinivas Gollapudi ◽  
S. Karthekeyan ◽  
Naveen Kalra

2015 ◽  
Vol 713-715 ◽  
pp. 2737-2740 ◽  
Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu

3D printing technology which is also named as fast prototypinghas shown excellent resultsto manufacture more complex and sophiscated products;hence is increasingly being developed and widely applied. Fused Deposition Modeling (FDM) is one of the most popular 3D printing techniques available today because it's simple and easy to make, these cheap printers nowadays are using this technology. Acrylonitrile Butadiene Styrene (ABS) is the material which is most commonly used among three kinds of common materials of FDM technology ABS, PLA, PVA. To design a patternfor using FDM technology using the printer UP2in particular, the exact calculations and the mechanical properties of the material ABS are required.The article focuses on testing the Izod impact strength.


Sign in / Sign up

Export Citation Format

Share Document