Assessing of Removal Efficiency of Indigo Carmine from Wastewater Using MWCNTs

2017 ◽  
Vol 41 (4) ◽  
pp. 1047-1053 ◽  
Author(s):  
S. Sobhanardakani ◽  
M. Ghoochian ◽  
S. Jameh-Bozorghi ◽  
R. Zandipak
Author(s):  
Zhang Ruo-Bing ◽  
Wu Yan ◽  
Li Jie ◽  
Li Guo-Feng ◽  
Li Teng-Fei ◽  
...  

AbstractResults obtained using a bipolar pulsed DBD reactor for Indigo Carmine (IC) water treatment are reported in this investigation. Effects of such parameters as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of IC solution were studied. The results showed that color removal efficiency was greatly enhanced by bubbling air into the reactor. Decolorization efficiency of the reactor increased with the increase of the pulse repetitive rate, decreased with the increase of the initial solution conductivity and gap distance. In addition, concentrations of ozone in the effluent gases and hydroxyl peroxide in the aqueous phase were determined and their functions on the decolorization were analyzed.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Teresa Torres-Blancas ◽  
Gabriela Roa-Morales ◽  
Carlos Barrera-Díaz ◽  
Fernando Ureña-Nuñez ◽  
Julian Cruz-Olivares ◽  
...  

Green synthesis of metallic particles has become an economic way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating dyes. The synthesis of metal particles is gaining more importance due to its simplicity, rapid rate of synthesis of particles, and environmentally friendly. The present work aims to report a novel and environmentally friendly method for the synthesis of iron particles using deoiledPimenta dioicaL. Merrill husk as support. The indigo carmine removal efficiency by ozonation and catalyzed ozonation is also presented. Synthesized materials were characterized by N2physisorption and scanning electron microscopy (SEM/EDS). By UV-Vis spectrophotometry the removal efficiency of indigo carmine was found to be nearly 100% after only 20 minutes of treatment under pH 3 and with a catalyst loading of 1000 mgL−1. Analytical techniques such as determination of the total organic carbon content (TOC) and chemical oxygen demand (COD) showed that iron particles supported on deoiledPimenta dioicaL. Merrill husk can be efficiently employed to degrade indigo carmine and achieved a partial mineralization (conversion to CO2and H2O) of the molecule. From the results can be inferred that the prepared biocomposite increases the hydroxyl radicals generation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4810
Author(s):  
Lăcrămioara Rusu ◽  
Cristina-Gabriela Grigoraș ◽  
Elena Mirela Suceveanu ◽  
Andrei-Ionuț Simion ◽  
Andreea Veronica Dediu Botezatu ◽  
...  

Pharmaceuticals and dyes are a very important part of the nonbiodegradable or hard biodegradable substances present in wastewater. Microorganisms are already known to be effective biosorbents, but the use of free microbial cells involves difficulties in their separation from effluents and limits their application in wastewater treatment. Thus, this study aimed to develop biosorbents by immobilizing Saccharomyces cerevisiae, Saccharomyces pastorianus and Saccharomyces pastorianus residual biomass on natural polymers (alginate and chitosan) and to evaluate the biosorptive potential for removal of pharmaceuticals and dyes from water. Six types of biosorbents were synthesized and characterized by Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy techniques and their biosorptive capacities for three drugs (cephalexin, rifampicin, ethacridine lactate) and two dyes (orange II and indigo carmine) were evaluated. The obtained results show that the removal efficiency depends on the polymer type used for the immobilization. In case of alginate the removal efficiency is between 40.05% and 96.41% for drugs and between 27.83% and 58.29% for dyes, while in the case of chitosan it is between 40.83% and 77.92% for drugs and between 17.17% and 44.77% for dyes. In general, the synthesized biosorbents proved to be promising for the removal of drugs and dyes from aqueous solutions.


TAPPI Journal ◽  
2017 ◽  
Vol 16 (10) ◽  
pp. 559-564 ◽  
Author(s):  
ZHEN WANG ◽  
PINGPING BIN ◽  
YING LIU ◽  
YU LIU ◽  
GUIHUA YANG ◽  
...  

Epoxidized dialdehyde cellulose (EDC) was prepared and grafted with melamine to obtain melamine grafted epoxidized dialdehyde cellulose (EDC-melamine); the products were characterized by various methods and were used as carriers to immobilize laccase. Results show EDC-melamine can immobilize laccase effectively and have higher enzymatic activity compared with EDC. Furthermore, the enzymatic activity of EDC-melamine was found to be as high as 865 U•mg-1, compared with 140U•mg-1 for EDC. The removal efficiency of 2,4-dichlorophenol (2,4-DCP) for EDC-melamine immobilized laccase was about 71.5% at 40°C for 4 h at 10.0 mg•L-1 and dosage of laccase = 0.2 g/L. The removal efficiency can remain greater than 63%, even after six cycles.


2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

Reproduction ◽  
2000 ◽  
pp. 225-229 ◽  
Author(s):  
A Gul ◽  
C Kotan ◽  
I Dilek ◽  
T Gul ◽  
A Tas ◽  
...  

The aim of this study was to determine whether autologous erythrocyte suspension can be used as a dye for evaluation of tubal patency and whether it has any advantages over methylene blue or indigo carmine solutions. Reproductively healthy female nulliparous Wistar Albino rats (n = 30), aged 6 months, mass 165-195 g, were assigned randomly to three groups. Rats received a 1 ml i.p. injection of 5% (w/v) methylene blue solution (methylene blue group: n = 10), 5% (w/v) indigo carmine solution (indigo carmine group: n = 10) or 5% (v/v) fresh autologous erythrocyte suspension (autologous erythrocyte group: n = 10). At 4 weeks after injection, a small sterile opening was made in the peritoneal cavity of each rat. The cavity was rinsed once with TCM-199 to collect macrophages. The rinsed peritoneal contents were cultured overnight to evaluate macrophage activation. The peritoneal opening was expanded for evaluation of adhesion formation. Only one rat from the autologous erythrocyte group had intra-peritoneal adhesions (score 2), whereas all rats in the methylene blue group (score 1: n = 1; score 2: n = 4; score 3: n = 4; and score 4: n = 1) and seven rats in the indigo carmine group (score 1: n = 1; score 2: n = 2; score 3: n = 3; and score 4: n = 1) had intra-abdominal adhesions. Macrophage activity was observed in the cultured peritoneal contents collected from the methylene blue and indigo carmine groups but not from the autologous erythrocyte group. Adhesion formation could be due to macrophage activation caused by methylene blue and indigo carmine solutions. These results indicate that tubal patency can be observed by laparoscopy using autologous erythrocyte suspension. The results of this study are believed to be the first to indicate that a patient's own erythrocyte suspension could be used during observation of tubal patency by laparoscopy. However, further studies are required.


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3273-3282
Author(s):  
I. Cosme-Torres ◽  
M.G. Macedo-Miranda ◽  
S.M. Martinez-Gallegos ◽  
J.C. González-Juárez ◽  
G. Roa-Morales ◽  
...  

AbstractThe heterogeneous catalyst HTCMgFe was used in the degradation of the IC, through the heterogeneous photo-fenton treatment, this material in combination with H2O2 and UV light degraded the dye in 30 min at pH 3. As the amount of HTCMgFe increases the degradation it was accelerated because there are more active catalytic sites of Fe2+ on the surface of the material, which generates a greater amount of •OH radicals. The HTCMgFe was characterized by infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray energy dispersive elemental analysis (EDS). The UV-vis spectrum shows that the absorption bands belonging to the chromophore group of the IC disappear as the treatment time passes, indicating the degradation of the dye.


Author(s):  
Veena Vijayan ◽  
Suguna Yesodharan ◽  
E. P. Yesodharan

Solar photocatalysis as a potential green technology for the removal of traces of the dye pollutant Indigo carmine (IC) from water is investigated using ZnO as the catalyst. Degradation/decolorization alone does not result in complete decontamination as seen from the significant Chemical Oxygen Demand (COD) of water even after the parent compound has disappeared completely. The degradation proceeds through many intermediates which also get mineralized eventually but slowly. Oxalic acid is identified as a stable slow mineralizing degradation product which itself is formed from other transient intermediates. Effect of various parameters such as catalyst dosage, concentration of the dye, pH, temperature, presence of contaminant salts etc. on the degradation is investigated and quantified. Oxidants such as S2O82- and H2O2 have only moderate influence on the degradation. The degradation follows variable kinetics depending on the concentration of the substrate. The reaction proceeds very slowly in the absence of O2 indicating the importance of reactive oxygen species and hydroxyl free radicals in photocatalysis. H2O2 formed insitu in the system undergoes concurrent decomposition resulting in stabilization in its concentration. The study demonstrates that solar photocatalysis can be used as a viable tool for the purification of water contaminated with traces of IC.


Sign in / Sign up

Export Citation Format

Share Document