Calcined Marl and Condensed Silica Fume as Partial Replacement for Ordinary Portland Cement

2018 ◽  
Vol 16 (11) ◽  
pp. 1549-1559 ◽  
Author(s):  
Abolfazl Soltani ◽  
Amir Tarighat ◽  
Masoud Varmazyari
2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


2012 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Ariyadi Basuki ◽  
Maulana Ikhwan Sadikin

Dalam penelitian ini dilakukan serangkaian pengujian untuk mengetahui sifat fisik dari material penyusun (agregat), yang kemudian dirancang komposisi rencana beton dengan mutu K250 (normal/kontrol) dan K250 dengan aditif Silica Fume 10% dari berat semen. Variasi campuran menggunakan tiga tipe semen yang berbeda yaitu Ordinary Portland Cement (OPC)/ Semen Tipe I, Portland Composite Cement (PCC) dan Semen Tipe II. Proses dilanjutkan dengan pembuatan sampel uji silinder berukuran 15 cm x 30 cm (karakteristik kuat tekan, ketahanan sulfat), sampel uji prisma berukuran 20 cm x 20 cm x 12 cm (karakteristik permeabilitas) dan sampel uji kubus berukuran 15 cm x 15 cm x 15 cm (untuk penetrasi klorida). Pengamatan dilakukan untuk melihat karakteristik beton K250 dengan penambahan silica fume 10%, dibandingkan dengan beton normal sebagai acuan, serta aplikasinya dalam lingkungan normal maupun asam (Sulfat, Klor). Hasil kuat tekan memperlihatkan, bahwa campuran dengan menggunakan semen PCC memiliki nilai kuat tekan rata-rata diatas semen OPC. Penambahan silica fume pada campuran semen PCC akan menaikkan nilai kuat tekan sebesar 4,2% dibandingkan beton normal dengan produk semen yang sama, meskipun nilai rasio air-semen nya membesar menjadi 0,71 karena penambahan air. Nilai kuat tekan terbesar diperoleh untuk campuran beton dengan semen Tipe II. Campuran dengan semen PCC (2) menunjukkan nilai penetrasi yang lebih kecil dibandingkan campuran lainnya, hal ini mengindikasikan produk beton yang terbentuk memiliki kepadatan yang lebih baik dari produk campuran lainnya dan tidak porous, sehingga dapat dikatakan memiliki tingkat durabilitas yang cukup baik. Untuk ketahanan terhadap serangan sulfat, beton dengan menggunakan campuran semen tipe II mengalami tingkat pelapukan/penggerusan penampang (scaling) yang lebih besar dibandingkan campuran beton lainnya, meskipun begitu hal ini tidak mempengaruhi nilai kuat tekannya. Untuk produk dengan semen PCC, serangan sulfat tidak mempengaruhi nilai kuat tekannya, bahkan cenderung naik bila dibandingkan pada usia 28 hari.Kata kunci: aspek durabilitas, tipe semen, pemanfaatan silica fume


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


2015 ◽  
Vol 820 ◽  
pp. 492-496
Author(s):  
D.C.S. Garcia ◽  
Roberto Braga Figueiredo ◽  
Maria Teresa Paulino Aguilar

The aim of this paper was to investigate the influence of heat treatment on hardness evolution of cement pastes containing silica fume. The specimens were prepared with Ordinary Portland Cement, water/binder ratio of 0,40 and 25% wt. silica fume. The specimens were cast at room temperatures and after 24 hours, they were placed in a furnace for 24 hours, with heat regimes of 100°C, 200°C and 300°C and then submitted to the ultra-microhardness test. The microstructure was analyzed using optical microscopy. The results showed that the silica fume prevents the production of calcium hydroxide and the heat treatment increases the material hardness.


2020 ◽  
Vol 16 (2) ◽  
pp. 289-298
Author(s):  
Musab Sabah Abed

AbstractWith the intention of providing a balance between the disposal of wastes generated from incineration processes and mitigate the emissions from industrial activities, the reuse of incineration waste as alternatives to conventional binders would offer a sustainable solution to reduce their environmental impact. This study aims to experimentally investigate the effect of firewood, ash (FWA) and ordinary Portland cement on some of the geotechnical properties of low plastic clayey soil (CL). The experimental program was introduced by partial replacement of ordinary Portland cement with firewood ash (FWA) up to 10 % with an increment of 2 %. A series of unconfined compressive test (UCT) and Atterberg limits test were performed. The results indicate that plasticity characteristics are affected by the addition of both cement and (FWA). Also, the results showed that the unconfined compressive strength increases for all replacement levels in comparison with the plain clay sample. The term deformability index (DI) also discussed with respect to different replacement level. The 70.61 % pozzolanic activity index indicates that (FWA) is a good pozzolan in accordance with ASTM C 618 specification. Finally, three modes of failure were detected which varying in accordance with the proportion of replacement.


Sign in / Sign up

Export Citation Format

Share Document