scholarly journals Utilization of Sugarcane Bagasse Ash from Power Co-generation Boilers as a Supplementary Cementitious Material

Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 

Author(s):  
L. S. Gwarah ◽  
B. M. Akatah ◽  
I. Onungwe ◽  
P. P. Akpan

The investigation of sawdust ash (SDA) as a partial replacement for cement in concrete was studied owing to the high cost and increasing demand for cement in a harsh economy and considering the presence of limited construction materials and waste to wealth policy. Ordinary Portland Cement (OPC) was replaced by 0%, 5%, 10%, 15%, 20%, 25% and 30% of SDA. Slump test and consistency test (flow table apparatus test) were conducted on the freshly mixed concrete sample, and compressive strength test was conducted on the hardened concrete cubes of 150mm2, which was cured between 7, 14, 21 and 28 days. The results revealed that the slump decreases as the SDA content increases in percentage, while the consistency of the freshly mixed concrete remarkably moves from high, medium to low as the SDA content increases. The compressive strength of the hardened concrete undergone a decrease in strength, as the partial replacement of OPC with SDA increases. By the results interpretation, it is observed that 5% to 10% SDA when replaced with OPC can still result in the desired strength of concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jijo James ◽  
P. Kasinatha Pandian ◽  
K. Deepika ◽  
J. Manikanda Venkatesh ◽  
V. Manikandan ◽  
...  

The study involved investigating the performance of ordinary Portland cement (OPC) stabilized soil blocks amended with sugarcane bagasse ash (SBA). Locally available soil was tested for its properties and characterized as clay of medium plasticity. This soil was stabilized using 4% and 10% OPC for manufacture of blocks of size 19 cm × 9 cm × 9 cm. The blocks were admixed with 4%, 6%, and 8% SBA by weight of dry soil during casting, with plain OPC stabilized blocks acting as control. All blocks were cast to one target density and water content followed by moist curing for a period of 28 days. They were then subjected to compressive strength, water absorption, and efflorescence tests in accordance with Bureau of Indian standards (BIS) specifications. The results of the tests indicated that OPC stabilization resulted in blocks that met the specifications of BIS. Addition of SBA increased the compressive strength of the blocks and slightly increased the water absorption but still met the standard requirement of BIS code. It is concluded that addition of SBA to OPC in stabilized block manufacture was capable of producing stabilized blocks at reduced OPC content that met the minimum required standards.


2021 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Marwa Saadi Mhmood

AbstractA quaternary supplementary cementitious materials as partial replacement of ordinary Portland cement decreases CO2 emission. This paper has investigated the properties of mortars made from different quaternary blends of wood ash, steel slag powder and glass powder with ordinary Portland cement at different replacement levels of 0, 24, 25, and 30% by weight of the binder. The blended mortar mixtures tested for flow, compressive strength and density. The results showed that the flow of mortars is decreased with the combined use of steel slag powder, glass powder, and wood ash compared with control mix. Compressive strength reduced with the combination of steel slag powder, glass powder and wood ash but this reduction effects is acceptable especially at 24% replacement contain super-plasticizer compared with the ecological benefit.


2018 ◽  
Vol 765 ◽  
pp. 324-328
Author(s):  
Tiago Assunção Santos ◽  
José da Silva Andrade Neto ◽  
Vitor Souza Santos ◽  
Daniel Véras Ribeiro

Due to the concern with the environmental impacts caused by the gases emitted by the cement industry and by the inadequate disposal of wastes generated in the sugar-alcohol industry, such as sugarcane bagasse ash (SCBA), a search for the development of new technologies, which are less aggressive to the environment and that propose feasible alternatives, began in order to reuse these wastes properly. Among these alternatives is the reuse of SCBA as partial replacement to cement or as addition to cementitious matrices. In this way, the present research has the objective of analyzing the influence of SCBA obtained by the calcination of sugarcane bagasse (SCB), at 600°C, in the process of Portland cement hydration. Initially, the SCBA was characterized physically, chemically and mineralogically, and then cement pastes with 20% and 35% substitution contents were elaborated, besides the reference paste, which were analyzed through X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The results obtained show that there is a consumption of portlandite as a consequence of the use of SCBA, evidencing the pozolanicity of these ashes. In the pastes with 35% substitution content, there was an intense consumption of the portlandite, indicating, in this proportion, the pozzolanic reaction was more intense.


2019 ◽  
Author(s):  
Ismail Marzuki ◽  
Erniati Bachtiar ◽  
ASRI MULYA SETIAWAN ◽  
SRIGUSTY

the availability of sugarcane bagasse ash produced by Arasoe Sugar Factory, it is not used utilized. That sugarcane bagasse ash has size very fine that it can pollute the air. The sugarcane bagasse ash has silicate content, and it has pozzolan properties. The needs of construction material are something that to think about that. It is an alternative to substitute the using of cement in concrete construction. This study is aimed to find the potential of sugarcane bagasse ash in Arasoe Sugar Factory for partial substitution of cement in concrete. The sample made from the variety of sugarcane bagasse ash 0%, 2.5%, 5%, and 7.5% as partial substitution of cement in concrete. The ratio of water and cement is 0.45. The specimen of concrete is taken care in standard condition at the laboratory and compressive strength test when the sample is in 28, 45, and 62 days old. The compressive strength test refers to ASTM C39/ C39M-01 (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens). The development of compressive strength of concrete with many variations of sugarcane bagasse ash 0% 2.5%, 5% is increasing along with the age of concrete, however in contrast with 7.5% of sugarcane bagasse ash the decreasing in 60 days old later. Partial substitute of sugarcane bagasse ash in concrete is possible to do in an amount about 5% of sugarcane bagasse ash


Author(s):  
Manish Ram E ◽  
Sindhu Vaardhini U

Utilization of the waste products in the agricultural industry has been the focus of Research for economic, environmental, and technical reasons. Sugarcane Bagasse Ash (SCBA) is one of the promising material, with its potential proved to be used as a partial replacement of cement as well as mineral admixtures for producing concrete; properties of such concrete depend on the chemical composition, fineness, specific surface area of SCBA. An experimental investigation will be carried out to examine the impact of replacing cement by bagasse ash to the mechanical and physical properties of pastes and mortars, fresh and harden concrete such as consistency, setting time and workability, compressive strength. Sugarcane Bagasse Ash powder used by replacing fly ash at 40%, 50%, and 60%. Compressive strength and water absorption test will be carried out for evaluating the performance of the material.


2019 ◽  
Vol 8 (4) ◽  
pp. 3733-3736

Nowadays geopolymer concretes are subjected to heat curing. A large amount of highly corrosive and the hygroscopic alkaline activators are nowadays generally utilized in producing geopolymer concretes. In this paper, hybrid Ordinary Portland Cement (OPC) and geopolymer mixes are developed. The mainly used activator id the Solid potassium carbonate at different percentage is used as 5% & 10% of the weight of geopolymeric materials and OPC was blended with geopolymeric materials in different proportions. By adding cement, improves all the geopolymer properties except workability. By Applying external heat, it plays an important role in gaining strength. Strength gained by the absence of external heat is achieved by using Portland cement as a partial replacement of geocement. The influence of OPC content on the compressive strength development is investigated, and the optimized amount of solid activator to be used in the mix is also investigated. It is observed that percentage of strength increase decreases from52.24% to 14.77% as the OPC content increased from 20% to 60%.


Author(s):  
P. Subathra ◽  
Binil Varghese ◽  
Muhammed Jamsheed K. P ◽  
Muzammil T. H

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Author(s):  
Oluwarotimi Michael Olofinnade ◽  
Isaac T. Oyawoye

Utilization of concrete wastes as aggregate in conventional concrete is regarded as a promising way of achieving sustainability within the built-up environment. This study investigated the performance of high strength concrete produced using recycled aggregate (RCA) with the addition of calcined clay in the concrete mixes. The recycled aggregate was sourced from concrete rubbles and treated by soaking in water, while calcined clay was sourced from the pilot pozzolana plant of the Nigerian Building and Road Research Institute (NBRRI). The recycled concrete aggregates were used as a replacement for coarse aggregate at levels of 0, 20, 40, 60, 80 and 100%, using a mix ratio of 1:1:2 at a constant water-binder ratio of 0.25. Superplasticizer was added to ensure the workability of the mixes. The calcined clay was added at 15 and 20% partial replacement for cement in the mixes. Physical and chemical properties of the materials used were determined, while the workability of the concrete mixes was examined using the slump. The compressive strength of the hardened concrete was determined after 7, 28 and 56 days of curing using 100 mm cube samples. Scanning Electron Microscope (SEM) was used to evaluate the morphology of selected concrete. Results showed that soaking of the recycled aggregate in water limit the water absorption rate of the RCA aggregates in the mixes, while the addition of calcined clay was observed to slightly reduce the workability of the concrete mixes. A reduction trend in compressive strength was noticed as the percentage of recycled aggregate increases, however, a significant increase in compressive strength was observed with the addition of calcined clay at 15% cement replacement. An optimum concrete mix containing 20% recycled aggregate and 15% calcined clay showed improve performance compare to the other mixes. The implication of these results suggests that recycled concrete aggregate can be used for the production of sustainable structural concrete.


Author(s):  
P. A. Prabakaran ◽  
Satheesh Kumar KRP ◽  
Janani G

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Sign in / Sign up

Export Citation Format

Share Document