scholarly journals Simulation of the impact of pollution discharged by surface waters from agricultural areas on the water quality of Puck Bay, Baltic Sea

Author(s):  
Piotr Zima
Author(s):  
Donald Runnells ◽  
Mary Siders

In order to investigate the impact of the 1988 fires on the chemistry and water quality of shallow ground water in Yellowstone National Park, a two­year program of sampling and analysis was begun in August, 1989. Samples from ground-water wells for which pre-fire chemical data could be obtained were selected for this study. Although it may have been anticipated that the surface waters would show some effects of fire, in terms of increased sedimentation and the addition of ash-laden runoff, the effects of the fires on ground water are less predictable. The purpose of this investigation is to determine the character and extent of these effects.


2005 ◽  
Vol 51 (5) ◽  
pp. 53-59 ◽  
Author(s):  
H.A.J. Senhorst ◽  
J.J.G. Zwolsman

A number of possible relationships between climate change and water quality of Dutch surface waters have been investigated and an indicative quantification of the impact of climate change on water quality has been established. The analysis focused on water quality during periods of low flow and extreme heat, which are assumed to increase in frequency and intensity due to climate change. The results indicate that the impact of climate change on water quality cannot be generalised and should be assessed on a case by case basis. However, the impact on extreme situations (floods and droughts) seems to be largest, whilst water quality under average discharge conditions appears to be relatively unchanged.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2989
Author(s):  
Katarzyna Dębska ◽  
Beata Rutkowska ◽  
Wiesław Szulc ◽  
Dariusz Gozdowski

Surface waters are very important for society, as they are a source of potable water, as well a water supply for agricultural, industrial and recreational purposes. This paper presents changes in the quality of the water in the Utrata River, along its entire length, as a function of the catchment area’s land use. Water-quality measurements were carried out once a month for a total period of one year (April 2019–March 2020) at 24 measurement points. The concentrations of the following compounds were measured: total phosphorus, ammonia nitrogen and nitrate nitrogen, dissolved oxygen, and chemical oxygen demand. The results were compared with the limit values specified in the Regulation of the Minister of Maritime Economy and Inland Navigation. In order to determine the impact of land use on water quality in the Utrata River, principal component analyses (PCA) were conducted. The research demonstrated a considerably negative impact of agricultural land use and the presence of urban areas on the water quality of the Utrata River, with elevated concentrations of total phosphorus, ammonia nitrogen, nitrate nitrogen and COD, and decreasing concentrations of dissolved oxygen. The presented results point to the need for effective strategies to mitigate the adverse impact of agriculture and urbanisation on the environment and surface waters.


2021 ◽  
Vol 13 (9) ◽  
pp. 1683
Author(s):  
Nandini Menon ◽  
Grinson George ◽  
Rajamohananpillai Ranith ◽  
Velakandy Sajin ◽  
Shreya Murali ◽  
...  

Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14).


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
MANOJ KUMAR SHUKLA

Present study points out the impact of Lockdown on the health of the Yamuna river at Delhi stretch by comparing prelockdown and Post-lockdown period by studying the reports of pollution monitoring agencies. Delhi segment of the Yamuna is highly polluted, where alongwith domestic sewage a huge quantity of industrial waste is being discharged continuously without proper treatment. Pre lockdown (March 2020) water quality parameters at three sampling stations named as Palla, Nizammuddin Bridge and Okhla barrage U/s in Delhi were, pH were 8.7, 7.3 and 7.2, DO were 17.1 mg/L, not detected in later two sites, BOD were 7.9 mg/L, 57 mg/L and 27 mg/L and COD were 28 mg/L, 90 mg/L and 95 mg/L respectively and postlockdown period (April 2020) the pH was 7.8, 7.2 and 7.1, DO was 8.3 mg/L, 2.4 mg/L and 1.2 mg/L BOD was 2 mg/L, 5.6 mg/ L and 6.1 mg/L and COD were 6 mg/L, 16 mg/L and 18 mg/L respectively. The study of these parameters at three sampling stations reveals that the lack of industrial pollutants discharging due to nationwide lockdown for COVID-19 pandemic had positive effect on water quality of this river. Water quality could be maintained by planned establishment of industries and setup of ETP with without gap between generation and treatment.


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Author(s):  
Gilbert K. Gaboutloeloe ◽  
Gugu Molokwe ◽  
Benedict Kayombo

The impact of partially treated wastewater on the water quality of Notwane river stretch in the Gaborone region of Botswana was investigated. Water samples collected at effluent discharge point and three other sampling sites downstream were analyzed for pH, temperature, Biological Oxygen Demand (BOD5), Ammonia-nitrogen (Ammonia-N) and Nitrate-nitrogen (Nitrate-N). Sampling was conducted bi-weekly between February 2013 and April 2013. The ranges of measured parameters were:  pH (7.6-8.5), temperature (22-23ºC), BOD5 (11.2-27.0 mg/l), Ammonia-N (2.4-60.5 mg/l), Nitrate-N (20.6-28.6 mg/l). Analysis of variance, Games-Howel multiple comparisons and Pearson correlation were used to separate variable means. The results signal river non-point pollution due to runoff inflow of organics mainly from land use and domestic waste dumping by nearby dwellings. Temperature, BOD5, and pH range values were all within the Botswana Bureau of Standards (BOBS) limit while the maximum Ammonia-N and Nitrate-N were above BOBS limit by 50.5 mg/l and 6.6 mg/l, respectively. Regulations on indiscriminate waste dumping and discharge standards adherence should be enforced.


The quality of surface water remains an important issue today. This is particularly acute for water bodies located in the urban-basin geosystems. Purpose. To estimate pressure of atmospheric precipitation within the urban landscape basin geosystem on the river water (by example of the Kharkiv river). Methods. Field landscaping, ecological, landscape-geochemical; analytical; system analysis; chemical analytical; statistical Results. An assessment of the state of surface waters under the impact from the surface runoff of atmospheric origin during 2014-2016, and partly from 2017-2019, formed under the influence of the transport (partly residential) subsystem of the urban area and surface waters in Kharkiv. On the salt content, the characteristic of water quality is "moderately polluted" (1,6); on the tropho-saprobiological indicators, the quality of water is characterized as "polluted" (from 3.1 to 2.75 along the river). It is in this context the impact of waters, which is formed in the conditions of the urban environment for the quality of natural waters, is well demonstrated. The presence of high values of pollutants and natural factors. The assessment of the quality of water on the content of specific indicators is "moderately polluted" (from 2.28 to 1.85). Conclusions. The water of the Kharkiv region, which has a strong influence from the urban environment, has a grade III quality; the water is "moderately polluted". Environmental assessment indicates the impact of surface runoff already on the middle part of the river, which increases in accordance with the conditions of the operation of urban landscapes and anthropogenic (transport) load.


2021 ◽  
Vol 261 ◽  
pp. 04023
Author(s):  
Xu He ◽  
Hou Siyan

The water quality of six important rivers in Haihe River Basin, including Yongding River, Luanhe River, North Canal, Daqing River, South Canal and Chaobai River, was evaluated. The influence of point source and non-point source on water quality was analyzed. The causes of water environmental pollution in the major rivers were preliminarily revealed. The results show that the water quality of Chaobai River is good, and the impact of point source and non-point source discharge on the water body is small. Other rivers are affected by different degrees of point source and non-point source pollution. Based on the analysis results, the engineering measures and management countermeasures for river regulation are put forward.


Sign in / Sign up

Export Citation Format

Share Document