scholarly journals Topographic Controls on the Distribution of Summer Monsoon Precipitation over South Asia

2020 ◽  
Vol 4 (4) ◽  
pp. 667-683
Author(s):  
Moetasim Ashfaq
2016 ◽  
Author(s):  
Melanie Perello ◽  
◽  
Broxton W. Bird ◽  
Yanbin Lei ◽  
Pratigya J. Polissar ◽  
...  

2021 ◽  
Vol 7 (23) ◽  
pp. eabg3848
Author(s):  
Steven C. Clemens ◽  
Masanobu Yamamoto ◽  
Kaustubh Thirumalai ◽  
Liviu Giosan ◽  
Julie N. Richey ◽  
...  

South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.


2004 ◽  
Vol 8 (1) ◽  
pp. 115-118 ◽  
Author(s):  
Hongxi Pang ◽  
Yuanqing He ◽  
Zhonglin Zhang ◽  
Aigang Lu ◽  
Juan Gu

Abstract. The deuterium excess in summer monsoon precipitation, determined from isotopic measurements(δ18O and


Author(s):  
Xingang Dai ◽  
Yang Yang ◽  
Ping Wang

Abstract This paper focuses on Asian monsoon projection with CMIP5 multi-model outputs. A large-scale monsoon herewith is defined as a vector field of vertically integrated moisture flux from the surface to 500 hPa. Results demonstrate that the model ensemble mean underestimated the summer monsoon and overestimated slightly the winter monsoon over South Asia in both CMIP5 historical climate simulation and the monsoon projection for 2006–2015. The major of the bias is the model climate drift (MCD), which is removed in the monsoon projection for 2016–2045 under scenarios RCP4.5 for reducing the uncertainty. The projection shows that two increased moisture flows northward appeared across the Equator of Indian Ocean, the first is nearby Somalia coast toward northwestern part of South Asia, leading to excess rainfall in where the wet jet could reach, and the second starts from the equatorial Sect. (80°E–100°E) toward northeastern Bay of Bengal, leading to more rainfall spreading over the northwestern coast of Indochina Peninsula. In addition, a westward monsoon flow is intensified over the Peninsula leading to local climate moisture transport belt shifted onto South China Sea, which would reduce moisture transport toward Southwest China on one hand, and transport more moisture onto the southeast coast of the China mainland. The anomalous monsoon would result in a dry climate in Northwest China and wet climate in the coast belt during summer monsoon season for the period. Besides, the Asian winter monsoon would be seemingly intensified slightly over South Asia, which would bring a dry winter climate to Indian subcontinent, Northwest China, but would be more rainfall in southeast part of Arabian Peninsula with global climate warming.


Sign in / Sign up

Export Citation Format

Share Document