The Impact of Climate Change on Wheat, Barley, and Maize Growth Indices in Near-Future and Far-Future Periods in Qazvin Plain, Iran

Author(s):  
S. Maryam Banihashemi ◽  
Seyed-Saeid Eslamian ◽  
Bijan Nazari
Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 273 ◽  
Author(s):  
Fatemeh Fadia Maghsood ◽  
Hamidreza Moradi ◽  
Ali Reza Massah Bavani ◽  
Mostafa Panahi ◽  
Ronny Berndtsson ◽  
...  

This study assessed the impact of climate change on flood frequency and flood source area at basin scale considering Coupled Model Intercomparison Project phase 5 General Circulation Models (CMIP5 GCMs) under two Representative Concentration Pathways (RCP) scenarios (2.6 and 8.5). For this purpose, the Soil and Water Assessment Tool (SWAT) hydrological model was calibrated and validated for the Talar River Basin in northern Iran. Four empirical approaches including the Sangal, Fill–Steiner, Fuller, and Slope-based methods were used to estimate the Instantaneous Peak Flow (IPF) on a daily basis. The calibrated SWAT model was run under the two RCP scenarios using a combination of twenty GCMs from CMIP5 for the near future (2020–40). To assess the impact of climate change on flood frequency pattern and to quantify the contribution of each subbasin on the total discharge from the Talar River Basin, Flood Frequency Index (FFI) and Subbasin Flood Source Area Index (SFSAI) were used. Results revealed that the projected climate change will likely lead to an average discharge decrease in January, February, and March for both RCPs and an increase in September and October for RCP 8.5. The maximum and minimum temperature will likely increase for all months in the near future. The annual precipitation could increase by more than 20% in the near future. This is likely to lead to an increase of IPF. The results can help managers and policy makers to better define mitigation and adaptation strategies for basins in similar climates.


2021 ◽  
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul Wagner ◽  
Nicola Fohrer

<p>Most Wadi systems of the world are threatened by climate change and unsustainable consumption through different water use systems (WUS) which can result in an alteration of the hydrologic regime, a deterioration of water resources, and their valuable ecosystems. The objective of this study is to assess the impact of climate change and growing water demand on the alteration of the Halilrood River’s flow regime and the associated impacts on the ecosystem of the Jazmorian wetland in central Iran. The Soil and Water Assessment Tool (SWAT) model is used to simulate the flow regime of the near and far future (2030-2059 and 2070-2099). Based on 32 Indicators of Hydrologic Alteration (IHA) in conjunction with the Range of Variability Approach (RVA) alterations in the flow regime are evaluated. Impacts of three scenarios for future water use (No-, Constant-, and Projected-WUS) are assessed. No-WUS assumes pristine conditions in the future when no water use system are included in the model (no demand) and we only account for the impact of climate change; Constant-WUS assumes unaltered groundwater demand in the future; and Projected-WUS corresponds to the increases in the number of water use systems in the future (increasing demand). Flow regime alteration assessment indicates that climate change will severely affect the magnitude of monthly and annual extreme flows, frequency and duration of high and low Pulses in the Halilrood Basin, especially in the far future. The comparison of model simulations under different scenarios shows that the impact of climate change was more intense when growing water demand in the future is taken into account. The result of the RVA test indicates moderate and high level of changes for 18 indicators, thus likely affecting the environmental flows required for the health of the downstream wetland.</p>


2021 ◽  
Author(s):  
Nariman Mahmoodi ◽  
Jens Kiesel ◽  
Paul D. Wagner ◽  
Nicola Fohrer

Abstract. Understanding current and possible future alterations of water resources under climate change and increased water withdrawal allows for better water and environmental management decisions in arid regions. This study aims at analyzing the impact of groundwater withdrawals and climate change on groundwater sustainability and hydrologic regime alterations in a Wadi system in central Iran. A hydrologic model is used to assess streamflow and groundwater recharge of the Halilrood Basin on a daily time step under different scenarios over a model setup period (1979–2009) and for two future scenario periods (near future: 2030–2059 and far future: 2070–2099). The Indicators of Hydrologic Alteration (IHA) with a set of 32 parameters are used in conjunction with the Range of Variability Approach (RVA) to evaluate hydrologic regime change in the river. The results show that groundwater recharge is expected to decrease, and is not able to fulfil the increasing water demand in the far future scenario. The Halilrood River will undergo low and moderate flow alteration under both stressors during the near future as RVA alteration is classified as high for only three indicators, while in the far future, 11 indicators lie in high range. Absolute changes in hydrologic indicators are stronger when both climate change and withdrawals are considered in the far future simulations, since 27 indicators show significant changes and RVA show high and moderate level of changes for 18 indicators. Considering the evaluated RVA changes, future impacts on the freshwater ecosystems in the Halilrood Basin will be severe. The developed approach can be transferred to other Wadi regions for a spatially-distributed assessment of water resources sustainability.


2021 ◽  
Author(s):  
Fahimeh Mokhtari ◽  
Afshin Honarbakhsh ◽  
Saeed Soltani ◽  
Khodayar Abdollahi ◽  
Mehdi Pajoohesh

Abstract Drought appears as an environmentally integral part of climate change. This study was conducted to investigate the impact of climate change on climate variables, meteorological drought and pattern recognition for severe weather conditions in the Karkheh River Basin in the near future (2043-2071) and the distant future (2072-2100). The outputs of GFDL-ESM2, HadGEM2-ES, IPSL-CM5A-LR, MIROC and NoerESM1-M models were downscaled under the RCP 2.6 and RCP8.5 scenarios using the Climate Change Toolkit (CCT) at 17 meteorological stations. Then the SPEI index was calculated for the base and future periods and compared with each other. The results showed that the basin annual precipitation will likely increase in both future periods, especially in the near future. The annual maximum and minimum temperatures may also increase especially in the distant future. The rise in the maximum temperature will be possibly greater than the minimum temperature. Seasonal changes in maximum and minimum temperatures and precipitation indicate that the greatest increase in temperature and decrease in precipitation may occur in summer. Hence meteorological drought was also found to increase in the distant future. The application of the CCT model in the region showed that at least once a wet period similar to the flood conditions of 2019 will be observed for the near future. There will also be at least one similar drought in 2014 for the distant future in the region. However, in previous climate studies, future events have not been calculated based on identifying the pattern of those events in the past.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document