scholarly journals Design of the Airbag Inflation System Applicable to Conventional and Autonomous Vehicles

Author(s):  
Nina F. Yurchenko ◽  
David S. Breed ◽  
Shaowei Zhang

AbstractThe emergency transformation of various aspects of life and business these days requires prompt evaluation of autonomous vehicles. One of the primary reassessments deals with the applicability of the vehicle passive safety system to the protection of arbitrarily positioned passengers. To mitigate possible risks caused by the simultaneous deployment of several big airbags, a new principle of their operation is required. Herein, the aspirated inflator for a driver airbag is developed that can provide 50L-airbag inflation within 30–40 ms. As a result, about 3/4 of the air is to be entrained into an airbag from the vehicle compartment. The process is initiated by a supersonic pulse jet (1/3 air volume) generated pyrotechnically. Then the Prandtl–Meyer problem formulation enables guiding linear and angular dimensions of the essential parts of the device. Accordingly, a family of experimental models of varied geometry is fabricated and tested to determine their operational effectiveness in a range of motive pressure within ~ 3–7 MPa. Experiments are performed on a specially designed facility equipped with compressed-air tanks and a high-speed valve to mimic the inflator operation with the pyrotechnic gas generator. The aspirated inflator operability is characterized using multivariate measurements of pressure fields, high-speed video-recording of the airbag inflation process, and evaluation of aspiration (entrainment) ratio. The average volume aspiration ratio measured at 300 K is found to reach 2.8 and it’s expected to almost double at 1200 K.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3871
Author(s):  
Jiri Pokorny ◽  
Khanh Ma ◽  
Salwa Saafi ◽  
Jakub Frolka ◽  
Jose Villa ◽  
...  

Automated systems have been seamlessly integrated into several industries as part of their industrial automation processes. Employing automated systems, such as autonomous vehicles, allows industries to increase productivity, benefit from a wide range of technologies and capabilities, and improve workplace safety. So far, most of the existing systems consider utilizing one type of autonomous vehicle. In this work, we propose a collaboration of different types of unmanned vehicles in maritime offshore scenarios. Providing high capacity, extended coverage, and better quality of services, autonomous collaborative systems can enable emerging maritime use cases, such as remote monitoring and navigation assistance. Motivated by these potential benefits, we propose the deployment of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV) in an autonomous collaborative communication system. Specifically, we design high-speed, directional communication links between a terrestrial control station and the two unmanned vehicles. Using measurement and simulation results, we evaluate the performance of the designed links in different communication scenarios and we show the benefits of employing multiple autonomous vehicles in the proposed communication system.


Computer ◽  
2006 ◽  
Vol 39 (12) ◽  
pp. 48-51 ◽  
Author(s):  
C. Urmson ◽  
W. Whittaker ◽  
S. Harbaugh ◽  
M. Clark ◽  
P. Koon

Author(s):  
G. A. Atanov ◽  
A. N. Semco ◽  
O. P. Petrenko ◽  
E. S. Geskin ◽  
V. Samardzic ◽  
...  

The paper is concerned with improvement of the devices for formation of super high-speed fluid jets termed hydro cannon. Two modes of the energy injection into the fluid (the piston impact and the powder explosion) are considered and advantages of the use of the gunpowder are determined. A numerical technique for prediction of the jet formation, developed previously by one of the authors is applied for description of the velocity and pressure fields within the hydro cannon. Effect of the design parameters on the fluid acceleration is explored and suggestions for improvement of the hydro cannon design are made.


1986 ◽  
Vol 170 ◽  
pp. 83-112 ◽  
Author(s):  
M. M. Koochesfahani ◽  
P. E. Dimotakis

An experimental investigation of entrainment and mixing in reacting and non-reacting turbulent mixing layers at large Schmidt number is presented. In non-reacting cases, a passive scalar is used to measure the probability density function (p.d.f.) of the composition field. Chemically reacting experiments employ a diffusion-limited acid–base reaction to directly measure the extent of molecular mixing. The measurements make use of laser-induced fluorescence diagnostics and high-speed, real-time digital image-acquisition techniques.Our results show that the vortical structures in the mixing layer initially roll-up with a large excess of fluid from the high-speed stream entrapped in the cores. During the mixing transition, not only does the amount of mixed fluid increase, but its composition also changes. It is found that the range of compositions of the mixed fluid, above the mixing transition and also throughout the transition region, is essentially uniform across the entire transverse extent of the layer. Our measurements indicate that the probability of finding unmixed fluid in the centre of the layer, above the mixing transition, can be as high as 0.45. In addition, the mean concentration of mixed fluid across the layer is found to be approximately constant at a value corresponding to the entrainment ratio. Comparisons with gas-phase data show that the normalized amount of chemical product formed in the liquid layer, at high Reynolds number, is 50% less than the corresponding quantity measured in the gas-phase case. We therefore conclude that Schmidt number plays a role in turbulent mixing of high-Reynolds-number flows.


2021 ◽  
Author(s):  
Shiva Raj Pokhrel ◽  
Neeraj Kumar ◽  
Anwar Walid

Connected Autonomous Vehicles (CAVs) are Not-So-Futuristic. CAVs will be highly dynamic by intelligently exploiting multipath communication over several radio technologies, such as high-speed WiFi and 5G and beyond networks. Yet, the likelihood of data communication loss can be very high and/, or packets arrive at the destination not in correct working order due to erratic and mixed time-varying wireless links. Furthermore, the vehicular data traffic is susceptible to loss and delay variation,which recommends the need to investigate new multipath TCP(MPTCP) protocols for ultra-reliable low latency communication(URLLC) over such heterogeneous networks while reassuring CAVs’ needs. We undertake the challenge by jointly considering network coding and balanced linked adaptation for performing coupled congestion control across multiple wireless paths.Consequently, the proposed low delay MPTCP framework for connecting autonomous vehicles is efficient and intelligent by design. We conduct a rigorous convergence analysis of the MPTCP design framework. In summation, we provide a detailed mathematical study and demonstrate that the latency penalty for the URLLC-MPTCP developed over these networks becomes negligible when considering the possible benefits that multiple network convergence could offer. Our extensive emulation results demonstrate all these lucrative features of URLLC-MPTCP.


1998 ◽  
Vol 356 ◽  
pp. 25-64 ◽  
Author(s):  
M. F. MILLER ◽  
C. T. BOWMAN ◽  
M. G. MUNGAL

Experiments were conducted to investigate the effect of compressibility on turbulent reacting mixing layers with moderate heat release. Side- and plan-view visualizations of the reacting mixing layers, which were formed between a high-speed high-temperature vitiated-air stream and a low-speed ambient-temperature hydrogen stream, were obtained using a combined OH/acetone planar laser-induced fluorescence imaging technique. The instantaneous images of OH provide two-dimensional maps of the regions of combustion, and similar images of acetone, which was seeded into the fuel stream, provide maps of the regions of unburned fuel. Two low-compressibility (Mc=0.32, 0.35) reacting mixing layers with differing density ratios and one high-compressibility (Mc=0.70) reacting mixing layer were studied. Higher average acetone signals were measured in the compressible mixing layer than in its low-compressibility counterpart (i.e. same density ratio), indicating a lower entrainment ratio. Additionally, the compressible mixing layer had slightly wider regions of OH and 50% higher OH signals, which was an unexpected result since lowering the entrainment ratio had the opposite effect at low compressibilities. The large-scale structural changes induced by compressibility are believed to be primarily responsible for the difference in the behaviour of the high- and low-compressibility reacting mixing layers. It is proposed that the coexistence of broad regions of OH and high acetone signals is a manifestation of a more biased distribution of mixture compositions in the compressible mixing layer. Other mechanisms through which compressibility can affect the combustion are discussed.


Author(s):  
A. K. Dhingra ◽  
S. S. Rao

Abstract A new integrated approach to the design of high speed planar mechanisms is presented. The resulting nonlinear programming formulation combines both the kinematic and dynamic synthesis aspects of mechanism design. The multiobjective optimization techniques presented in this work facilitate the design of a linkage to meet several kinematic and dynamic design criteria. The method can be used for motion, path, and function generation problems. The nonlinear programming formulation also permits the imposition of constraints to eliminate solutions which possess undesirable kinematic and motion characteristics. To model the vague and imprecise information in the problem formulation, the tools of fuzzy set theory have been used. A method of solving the resulting fuzzy multiobjective problem using mathematical programming techniques is presented. The outlined procedure is expected to be useful in situations where doubt arises about the exactness of permissible values, degree of credibility, and correctness of statements and judgements.


2019 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Villads Schultz

Beam oscillation in laser material processing makes it possible to influence process behavior in terms of energy distribution, stability, melt pool dynamics and solidification. Within the setup presented here, the beam is oscillated transverse to the welding direction, and the filler wire is fed to the melt pool of a butt joint with an air gap. One advantage of this setup is the large gap bridging ability. Certain parameter sets lead to the so-called buttonhole welding method, which allows laser welding of smooth and nearly ripple-free seams. Observations showed a transition area between conventional keyhole and buttonhole welding in which the process is destabilized. Welds made with parameter sets from this area contain critical seam defects. Welding experiments with high-speed video recording and a simplified analytical model about the wire-beam interaction have helped to elucidate the mechanisms behind this. EN AW-6082 sheet material in 1.5 mm thickness and ML 4043 filler wire with 1.2 mm diameter were used. The investigations lead to the conclusion that partially melted wire segments result at certain parameter relations which hinder the formation of a buttonhole. If these segments are prevented, buttonhole welding occurs. In the transition area, these segments are very small and can lead to the detachment of a buttonhole, resulting in the named seam defects.


2019 ◽  
Vol 11 (19) ◽  
pp. 5237 ◽  
Author(s):  
Teron Nguyen ◽  
Meng Xie ◽  
Xiaodong Liu ◽  
Nimal Arunachalam ◽  
Andreas Rau ◽  
...  

The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to ≈ 10% and ≈ 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort.


Sign in / Sign up

Export Citation Format

Share Document