scholarly journals Platooning of Autonomous Public Transport Vehicles: The Influence of Ride Comfort on Travel Delay

2019 ◽  
Vol 11 (19) ◽  
pp. 5237 ◽  
Author(s):  
Teron Nguyen ◽  
Meng Xie ◽  
Xiaodong Liu ◽  
Nimal Arunachalam ◽  
Andreas Rau ◽  
...  

The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to ≈ 10% and ≈ 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort.

Author(s):  
Lieve Creemers ◽  
Mario Cools ◽  
Hans Tormans ◽  
Pieter-Jan Lateur ◽  
Davy Janssens ◽  
...  

The introduction of new public transport systems can influence society in a multitude of ways ranging from modal choices and the environment to economic growth. This paper examines the determinants of light rail mode choice for medium- and long-distance trips (10 to 40 km) for a new light rail system in Flanders, Belgium. To investigate these choices, the effects of various transport system–specific factors (i.e., travel cost, in-vehicle travel time, transit punctuality, waiting time, access and egress time, transfers, and availability of seats) as well as the travelers' personal traits were analyzed by using an alternating logistic regression model, which explicitly takes into account the correlated responses for binary data. The data used for the analysis stem from a stated preference survey conducted in Flanders. The modeling results are in line with literature: most transport system–specific factors as well as socioeconomic variables, attitudinal factors, perceptions, and the frequency of using public transport contribute significantly to the preference for light rail transit. In particular, the results indicate that the use of light rail is strongly influenced by travel cost and in-vehicle travel time and to a lesser extent by waiting and access–egress time. Seat availability appeared to play a more important role than did transfers in deciding to choose light rail transit. The findings of this paper can be used by policy makers as a frame of reference to make light rail transit more successful.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092110
Author(s):  
Runqiao Liu ◽  
Minxiang Wei ◽  
Nan Sang

To solve the problem of understeer and oversteer for autonomous vehicle under high-speed emergency obstacle avoidance conditions, considering the effect of steering angular frequency and vehicle speed on yaw rate for four-wheel steering vehicles in the frequency domain, a feed-forward controller for four-wheel steering autonomous vehicles that tracks the desired yaw rate is proposed. Furthermore, the steering sensitivity coefficient of the vehicle is compensated linearly with the change in the steering angular frequency and vehicle speed. In addition, to minimize the tracking errors caused by vehicle nonlinearity and external disturbances, an active disturbance rejection control feedback controller that tracks the desired lateral displacement and desired yaw angle is designed. Finally, CarSim® obstacle avoidance simulation results show that an autonomous vehicle with the four-wheel steering path tracking controller consisting of feed-forward control and feedback control could not only improve the tire lateral forces but also reduce tail flicking (oversteer) and pushing ahead (understeer) under high-speed emergency obstacle avoidance conditions.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4163
Author(s):  
Jamil Hamadneh ◽  
Domokos Esztergár-Kiss

Introducing autonomous vehicles (AVs) on the market is likely to bring changes in the mobility of travelers. In this work, extensive research is conducted to study the impact of different levels of automation on the mobility of people, and full driving automation needs further study because it is still under development. The impacts of AVs on travel behavior can be studied by integrating AVs into activity-based models. The contribution of this study is the estimation of AVs’ impacts on travelers’ mobility when different travel demands are provided, and also the estimation of AVs’ impact on the modal share considering the different willingness of pay to travel by AVs. This study analyses the potential impacts of AVs on travel behavior by investigating a sample of 8500 travelers who recorded their daily activity plans in Budapest, Hungary. Three scenarios are derived to study travel behavior and to find the impacts of the AVs on the conventional transport modes. The scenarios include (1) a simulation of the existing condition, (2) a simulation of AVs as a full replacement for conventional transport modes, and (3) a simulation of the AVs with conventional transport modes concerning different marginal utilities of travel time in AVs. The simulations are done by using the Multi-Agent Transport Simulation (MATSim) open-source software, which applies a co-evolutionary optimization algorithm. Using the scenarios in the study, we develop a base model, determine the required fleet size of AVs needed to fulfill the demand of the different groups of travelers, and predict the new modal shares of the transport modes when AVs appear on the market. The results demonstrate that the travelers are exposed to a reduction in travel time once conventional transport modes are replaced by AVs. The impact of the value of travel time (VOT) on the usage of AVs and the modal share is demonstrated. The decrease in the VOT of AVs increases the usage of AVs, and it particularly decreases the usage of cars even more than other transport modes. AVs strongly affect the public transport when the VOT of AVs gets close to the VOT of public transport. Finally, the result shows that 1 AV can replace 7.85 conventional vehicles with acceptable waiting time.


2012 ◽  
Vol 518 ◽  
pp. 409-417 ◽  
Author(s):  
Bartosz Firlik ◽  
Maciej Tabaszewski ◽  
Bogdan Sowinski

Light rail systems have now their great return in many European cities carrying an increasing number of people every year. This increasing trend requires suitable operation and maintenance standards for both vehicle and track. Furthermore, in order to make a public transport competitive to private transport, its very important to increase safety and ride comfort for passengers. The aim of the presented work was to determine the suitable vibration-based symptoms for the identification of a light rail vehicle technical state, as well as the development of appropriate methodology to use the information contained therein. Both simulation and experimental phase are described. The present analysis is focused mainly on the suspension state monitoring, but some others failures were also considered.


2012 ◽  
Vol 518 ◽  
pp. 66-75 ◽  
Author(s):  
Bartosz Firlik ◽  
Bartosz Czechyra ◽  
Andrzej Chudzikiewicz

Condition monitoring and fault detection systems are becoming increasingly important in rail vehicles maintenance and operation, ensuring safety and reliability improvement. Light rail systems are not the main target for this trend, because of low operational speed and lower safety factors. Nevertheless public transport operators begin to pay a closer attention to the technical state monitoring of vehicle and track, in order to reduce maintenance cost and increase safety and ride comfort for passengers, which is an important challenge for public transport competitiveness in XXI century. The paper describes the main concept of the innovative on-board condition monitoring system for light rail vehicle and track. Functional requirements, assumptions and procedures are described, as well as the on-board data acquisition unit with necessary transducers, which number, function and technical parameters were optimized during the research phase of the project. The prototype of the presented system is now being tested in normal operating conditions.


Author(s):  
Hongliang Zhou ◽  
Jinwu Gao ◽  
Haifeng Liu

Vehicle lateral acceleration is a critical state and index for vehicle safety and ride comfort. To limit it in high speed cornering situation, a vehicle speed preview controller is proposed with the information of future road curvature, just as a human driver behavior. The future road curvature can be obtained from high definition map in intelligent vehicle control, and to implement it, model predictive control method (MPC) is implemented taking advantage of its preview nature. In this preview speed control framework, a novel kinematics model with vehicle location, speed and track curvature is established for vehicle states prediction. The control performance index of MPC is constructed with vehicle road following index and lateral acceleration index with the aiming of promoting safety and ride comfort. The controller is evaluated during cornering with different road trajectory, initial speed, preview time and road adhesion coefficient in a hardware-in-the-loop simulation platform. It is testified that vehicle slows down before cornering as human driver does to decrease lateral acceleration and steering angle with the benefit of promoting comfort and safety.


2020 ◽  
Author(s):  
Bahman Moghimi ◽  
Camille Kamga

Giving priority to public transport vehicles at traffic signals is one of the traffic management strategies deployed at emerging smart cities to increase the quality of service for public transit users. It is a key to breaking the vicious cycle of congestion that threatens to bring cities into gridlock. In that cycle, increasing private traffic makes public transport become slower, less reliable, and less attractive. This results in deteriorated transit speed and reliability and induces more people to leave public transit in favor of the private cars, which create more traffic congestion, generate emissions, and increase energy consumption. Prioritizing public transit would break the vicious cycle and make it a more attractive mode as traffic demand and urban networks grow. A traditional way of protecting public transit from congestion is to move it either underground or above ground, as in the form of a metro/subway or air rail or create a dedicated lane as in the form of bus lane or light rail transit (LRT). However, due to the enormous capital expense involved or the lack of right-of-way, these solutions are often limited to few travel corridors or where money is not an issue. An alternative to prioritizing space to transit is to prioritize transit through time in the form of Transit Signal Priority (TSP). Noteworthy, transit and specifically bus schedules are known to be unstable and can be thrown off their schedule with even small changes in traffic or dwell time. At the same time, transit service reliability is an important factor for passengers and transit agencies. Less variability in transit travel time will need less slack or layover time. Thus, transit schedulers are interested in reducing transit travel time and its variability. One way to reach this goal is through an active intervention like TSP. In this chapter a comprehensive review of transit signal priority models is presented. The studies are classified into different categories which are: signal priority and different control systems, passive versus active priority, predictive transit signal priority, priority with connected vehicles, multi-modal signal priority models, and other practical considerations.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 671
Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Zhihong Li ◽  
Yunyi Jia

To improve the handling stability of automobiles and reduce the odds of rollover, active or semi-active suspension systems are usually used to control the roll of a vehicle. However, these kinds of control systems often take a zero-roll-angle as the control target and have a limited effect on improving the performance of the vehicle when turning. Tilt control, which actively controls the vehicle to tilt inward during a curve, greatly benefits the comprehensive performance of a vehicle when it is cornering. After analyzing the advantages and disadvantages of the tilt control strategies for narrow commuter vehicles by combining the structure and dynamic characteristics of automobiles, a direct tilt control (DTC) strategy was determined to be more suitable for automobiles. A model predictive controller for the DTC strategy was designed based on an active suspension. This allowed the reverse tilt to cause the moment generated by gravity to offset that generated by the centrifugal force, thereby significantly improving the handling stability, ride comfort, vehicle speed, and rollover prevention. The model predictive controller simultaneously tracked the desired tilt angle and yaw rate, achieving path tracking while improving the anti-rollover capability of the vehicle. Simulations of step-steering input and double-lane change maneuvers were performed. The results showed that, compared with traditional zero-roll-angle control, the proposed tilt control greatly reduced the occupant’s perceived lateral acceleration and the lateral load transfer ratio when the vehicle turned and exhibited a good path-tracking performance.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Norman Eppenberger ◽  
Maximilian Alexander Richter

Abstract Background This paper provides insight into the opportunity offered by shared autonomous vehicles (SAVs) to improve urban populations’ spatial equity in accessibility. It provides a concrete implementation model for SAVs set to improve equity in accessibility and highlights the need of regulation in order for SAVs to help overcome identified spatial mismatches. Methodology Through the formulation of linear regression models, the relationship between land-use and transportation accessibility (by car and public transport) and socio-economic well-being indicators is tested on district-level in four European cities: Paris, Berlin, London and Vienna. Accessibility data is used to analyse access to points of interest within given timespans by both car and public transport. To measure equity in socio-economic well-being, three district-level proxies are introduced: yearly income, unemployment rate and educational attainment. Results In the cities of Paris, London and Vienna, as well as partially in Berlin, positive effects of educational attainment on accessibility are evidenced. Further, positive effects on accessibility by yearly income are found in Paris and London. Additionally, negative effects of an increased unemployment rate on accessibility are observed in Paris and Vienna. Through the comparison between accessibility by car and public transportation in the districts of the four cities, the potential for SAVs is evidenced. Lastly, on the basis of the findings a ‘SAV identification matrix’ is created, visualizing the underserved districts in each of the four cities and the need of equity enhancing policy for the introduction of SAVs is emphasized.


Sign in / Sign up

Export Citation Format

Share Document