Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling

2019 ◽  
Vol 1 (6) ◽  
Author(s):  
Xinzhou Zhang ◽  
Lan Chen ◽  
Tom Mulholland ◽  
Tim A. Osswald
Author(s):  
Abigail Chaffins ◽  
Mohan Yu ◽  
Pier Paolo Claudio ◽  
James B. Day ◽  
Roozbeh (Ross) Salary

Abstract Fused deposition modeling (FDM), is a direct-write material extrusion additive manufacturing process, which has emerged as a method of choice for the fabrication of a wide range of biological tissues and structures. FDM allows for non-contact, multi-material deposition of a broad spectrum of functional materials for tissue engineering applications. However, the FDM process is intrinsically complex, consisting of a multitude of parameters as well as material-machine interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional integrity of fabricated bone scaffolds. Hence, process optimization in addition to physics-based characterization of the FDM process would be inevitably a need. The overarching goal of this research work is to fabricate biocompatible, porous bone scaffolds, incorporating autologous human bone marrow mesenchymal stem cells (hBMSCs), for the treatment of osseous fractures, defects, and eventually diseases. The objective of this work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) bone scaffolds, fabricated using fused deposition modeling (FDM) additive manufacturing process. In this study, biocompatible TPMS bone scaffolds were FDM-deposited, based on a medical-grade polymer composite, composed of polyamide, polyolefin, and cellulose fibers (named PAPC-II). In addition, the experimental characterization of the TPMS bone scaffolds was on the basis of a single factor experiment. The compression properties of the fabricated bone scaffolds were measured using a compression testing machine. Furthermore, a digital image processing program was developed in the MATLAB environment to characterize the morphological properties of the fabricated bone scaffolds.


2016 ◽  
Vol 22 (2) ◽  
pp. 387-404 ◽  
Author(s):  
Jonathan Torres ◽  
Matthew Cole ◽  
Allen Owji ◽  
Zachary DeMastry ◽  
Ali P. Gordon

Purpose This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with polylactic acid (PLA) as a media and relate the practical and experimental implications of these as related to stiffness, strength, ductility and generalized loading. Design/methodology/approach A two-factor-level Taguchi test matrix was defined to allow streamlined mechanical testing of several different fabrication settings using a reduced array of experiments. Specimens were manufactured and tested according to ASTM E8/D638 and E399/D5045 standards for tensile and fracture testing. After initial analysis of mechanical properties derived from mechanical tests, analysis of variance was used to infer optimized production variables for general use and for application/load-specific instances. Findings Production variables are determined to yield optimized mechanical properties under tensile and fracture-type loading as related to orientation of loading and fabrication. Practical implications The relation of production variables and their interactions and the manner in which they influence mechanical properties provide insight to the feasibility of using FDM for rapid manufacturing of components for experimental, commercial or consumer-level use. Originality/value This paper is the first report of research on the characterization of the mechanical properties of PLA coupons manufactured using FDM by the Taguchi method. The investigation is relevant both in commercial and consumer-level aspects, given both the currently increasing utilization of 3D printers for component production and the viability of PLA as a renewable, biocompatible material for use in structural applications.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 590
Author(s):  
Tim Feuerbach ◽  
Markus Thommes

The filament is the most widespread feedstock material form used for fused deposition modeling printers. Filaments must be manufactured with tight dimensional tolerances, both to be processable in the hot-end and to obtain printed objects of high quality. The ability to successfully feed the filament into the printer is also related to the mechanical properties of the filament, which are often insufficient for pharmaceutically relevant excipients. In the scope of this work, an 8 mm single screw hot-end was designed and characterized, which allows direct printing of materials from their powder form and does not require an intermediate filament. The capability of the hot-end to increase the range of applicable excipients to fused deposition modeling was demonstrated by processing and printing several excipients that are not suitable for fused deposition modeling in their filament forms, such as ethylene vinyl acetate and poly(1-vinylpyrrolidone-co-vinyl acetate). The conveying characteristic of the screw was investigated experimentally with all materials and was in agreement with an established model from literature. The complete design information, such as the screw geometry and the hot-end dimensions, is provided in this work.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Sign in / Sign up

Export Citation Format

Share Document