scholarly journals Evaluation of machining performance and multi criteria optimization of novel metal-Nimonic 80A using EDM

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Vikas K. Shukla ◽  
Rakesh Kumar ◽  
Bipin Kumar Singh

AbstractThis study focused to machine novel Nimonic 80A through Electric Discharge Machine process. The process parameters are optimised to achieve high surface integrity along with high material removal rate (MRR) with minimum energy consumption. Central composite design along with analysis of variance technique has been applied to make correlation between the process parameter and responses. The developed model of surface roughness shows that the peak current and pulse-on time have significant effect whereas; a little effect of pulse-off time. The said result may be obtained due to simultaneous action of deposition and notching (removal) of material in order to form crater. In case of MRR, the pulse-on time and peak current are found as significant factors with increasing trend (i.e. when the input values are increased the MRR increases) whereas; a reverse trend is noticed with pulse-off time. The optimum values for maximum MRR (0.512444 gm/min) and minimum surface roughness (7.82203 µm) with 81% desirability are obtained for the process parameter as 13.49 A peak current, 150 µs pulse-on time and 4 µs pulse-off time.

2014 ◽  
Vol 660 ◽  
pp. 48-54 ◽  
Author(s):  
Wahaizad Safiei ◽  
Safian Sharif ◽  
Ahmad Fairuz Mansor ◽  
Mohd Halimudin Mohd Isa

This study presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of Electrical Discharge Machining (EDM) input parameters on characteristics of EDM process. The machining parameters include peak current, servo voltage, pulse ON time and pulse OFF time. The study was conducted using 2 levels of Full Factorial Method in Design of Experiments. The design expert software employed to perform all the data analysis for Full Factorial and Central Composite Design (CCD) experiments. This study evaluates the machining performance of the Stainless Steel 316L using Sodick EDM linear motor series AM3L which employed Copper impregnated graphite diameter 7.0 mm as the tool electrode. The response variables are material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR) and dimensional accuracy. The result shows that the peak current was the most significant factors to all variable responses. The servo voltage does not have significant effects to the machining responses in RSM. Higher current produced higher MRR, EWR, SR and Dimensional Accuracy. Maximum MRR was obtained at peak current range from 27amp to 38amp, pulse on time range from 120μs to 145μs and 60μs of pulse off time. Maximum EWR was obtained at peak current range from 27amp to 37amp, pulse on time range from 140μs to 160μs and 60μs of pulse off time. High probably, the minimum EWR only can be obtained if peak current parameter sets greater than 45amp. Lower dimensional accuracy and SR obtain at 5amp of pulse on time. Higher pulse off time produced lower MRR and EWR.Keywords: EDM Die sinking, Stainless Steel 316L, Copper Impregnated Graphite Electrode, Response Surface Methodology, Surface Roughness, Material Removal Rate, Electrode Wear Rate, Dimensional Accuracy


2014 ◽  
Vol 550 ◽  
pp. 53-61
Author(s):  
R.Arun Bharathi ◽  
P.Ashoka Varthanan ◽  
K. Manoj Mathew

The objective of the present work is to predict the optimal set of process parameters such as peak current (IP), pulse on/off time (TON/TOFF) and spark gap voltage (SV) to achieve minimum Surface roughness (Ra), wire consumption rate (WCR) and maximum material removal rate (MRR). In this work, experiments were carried out by pulse arc discharges generated between ZnO coated brass wire and specimen (IS2062 steel) suspended in deionized water dielectric. The experiments were designed based on the above mentioned four factors, each having three levels. Custom design based Response Surface Methodology (RSM) is used in this research. 21 runs of experiments were constructed based on custom design procedure and results of the experimentation were analyzed analytically as well as graphically. Moreover the surface roughness after machining was measured by Taylor Hobson Surtronic device. Second order regression model has been developed for predicting Ra, WCR and MRR in terms of interactive and higher order machining parameters through RSM, utilizing relevant experimental data as obtained through experimentation. The research outcome identifies significant parametersand their effect on process performance on IS2062 steel. The results revealed that peak current, pulse on-time and their interactions have significant effects on Ra, whereas pulse off time and peak current have significant effects on MRR and it is also observed that peak current and interaction between peak current and pulse off time have significant effects on WCR. The adequacy of the above proposed models has been tested through the analysis of variance (ANOVA).


2021 ◽  
Vol 309 ◽  
pp. 01110
Author(s):  
K. Satyanarayana ◽  
B Ramya Krishna ◽  
M. Bhargavi ◽  
R. Eswari Vasuki ◽  
K. Raj Kiran

Wire electric discharge machining (WEDM) is one amongst the unconventional machining processes which might cut all kinds of shapes with an accuracy of +/−0.001mm. It will cut the materials that conduct electricity and can even cut the exotic metals like tungsten carbide, Hastelloy, Inconel etc. In the present work, machining on Inconel 600 by wire EDM with cryogenically treated brass wire is performed. Brass wire of 0.25mm diameter has been cryogenically treated at −90°C, −100°C and −110°C temperatures separately. An Experimental layout is designed as per Taguchi’s L-9 orthogonal array and experiments were conducted by varying machining parameters viz. Voltage, Pulse ON time and Pulse OFF time. The machining parameters are optimized using Taguchi’s methodology for minimum surface roughness and maximum metal removal rate (MRR). A Mathematical regression model for surface roughness and MRR is generated with the help of regression analysis. Through the Analysis of Variance (ANOVA) It was found that for MRR, pulse on time is the foremost contributing factor with 32.69% and for surface roughness, pulse off time is the foremost contributing factor with 23.59%.


Author(s):  
Wahaizad Safiei ◽  
Muhamad Ridzuan Radin Muhamad Amin

In this paper, the results of surface roughness (Ra) and material removal rate (MRR) are presented based on experimental studies of Electrical Discharge Machining (EDM) process parameters. Pulse ON time, pulse OFF time, peak current, gap voltage and jump speed are the selected input parameters and the experiments were conducted with Aluminium Alloy 5083 as a workpiece, copper as an electrode and the response variables are surface roughness (Ra) and material removal rate (MRR). Design of Experiment and Analysis of Variance (ANOVA) were applied to identify the optimum settings.The result shows that the significant factors for the value of surface roughness (Ra) and material removal rate (MRR) are pulses ON time and peak current.


2012 ◽  
Vol 472-475 ◽  
pp. 78-81 ◽  
Author(s):  
Mohinder Pal Garg ◽  
Ajai Jain ◽  
Gian Bhushan

This paper investigates the Wire Electric Discharge Machining of Titanium alloy 6-2-4-2.Eight process parameters namely pulse-on time, pulse-off time, peak current, spark gap set voltage, wire feed, wire tension, water pressure, pulse peak voltage and servo feed are varied to study their effect on surface roughness and wire breakage. The experiments are conducted using one-factor-at-a-time approach. Moreover, a few random experiments are also carried to study the phenomenon of wire breakage precisely. The study revealed that surface roughness is directly affected by the pulse-on time, pulse-off time, peak- current, spark gap set voltage and wire tension. Wire feed, Water pressure and pulse peak voltage have negligible effect on the surface roughness. Moreover, wire breakage is predominantly dictated by all the parameters except peak current and pulse peak voltage. An optimum range of input parameters has been bracketed as the final outcome for cutting in terms of surface roughness and to minimize the wire breakage frequency.


2021 ◽  
Vol 39 (6) ◽  
pp. 928-935
Author(s):  
Shukry H. Aghdeab ◽  
Raed R. Shwaish ◽  
Tahseen M. Salman

Electric discharge machine (EDM) or may be call electric spark machine is one of the most important cutting process or manufacturing process because it gives high accurate dimension and can be produced the most complex shape. In this present material removal rate and surface roughness for tool steel AISI L2 studied. The input parametric for this process is current, pulse on time (Ton) and pulse off time (Toff).A full factorial method is used to formulate machine parameters and find the optimal process parameters of an electric spark. The result shows that the Surface roughness increasing with increasing current and pulse on time is increases while no effect by increase in pulse off time. Best surface roughness when using low current and pulse in time. The material removal rate is increasing with increasing in current and pulse on time while decreasing when pulse of time is increased. The experimented and predicted values by using Minilab17 software ​​of this process are approximately equal.


2015 ◽  
Vol 1115 ◽  
pp. 24-28 ◽  
Author(s):  
Ahsan Ali Khan ◽  
Mohammed Baba Ndaliman ◽  
Ummu Atiqah Khairiyah binti Mohamad ◽  
Nurul Farhana binti Sulong ◽  
Zakaria Mohd Zain

Electrical discharge machining (EDM) is one of the most commonly used technique to machine very hard materials. Materials like hardened tool steels, titanium and its alloys and difficult-to-machine materials can be easily processed with EDM. The machining performance to a great extent depends on the composition of the electrode. This paper presents the machining performance of powder metallurgy (PM) compacted electrodes made from titanium carbide (TiC) and copper (Cu) powders. The Cu-TiC electrodes made up of 70% of TiC and 30% of Cu powders. They were compacted at a pressure of 6,000 psi (41.34 MPa). Mild steel was used as the workpiece material. Machining was conducted with the peak current, pulse-on time and pulse-off time as the electrical input variables. The output variables of the investigation were work surface roughness and its hardness. It was found that work surface roughness increases with increase in current and pulse-on-time. However, it decreases with increase in pulse-off time. It was found that the highest value of surface roughness (14.782 μm) was found at highest peak current (6.5 A), highest pulse on-time (7.5 μs) and lowest pulse-off time (6.5 μs). The highest value of surface hardness (57.3 BHB) was found at the same machining conditions. The smoothest surface (14.782 μm) was found at the lowest peak current (3.5 A), lowest pulse on-time (6.0 μs) and highest pulse-off time (8.5 μs). The lowest value of surface hardness (42.9 BHB) was found at the same machining conditions.


2019 ◽  
Vol 11 (01) ◽  
pp. 26-32
Author(s):  
Angga Sateria ◽  
Eko Yudo ◽  
Zulfitriyanto Zulfitriyanto

EDM is one of the nonconventional machining processes when making workpieces with conventional machining processes is difficult. This process has been used effectively in machining hard, high-strength and high temperature materials such as high speed steel (HSS) materials. In this study, prototype of EDM machines was carried out with engine variables such as current (A), pulse on time (µs) and pulse off time (µs). The material used is high speed steel (HSS) material used in cutting tools such as turning tools and milling tools. Surface roughness and material removal rate are responses observed to determine the quality of material remaval. The quality characteristic of the surface roughness response is "smaller is better" and the quality characteristics of the material removal rate response is "larger is better. The purpose of this study is to determine the best process parameter level to achieve the required performance characteristics in the material removal process using prototype EDM machines using the gray relational analysis (GRA) method, three process parameters are selected such as current, pulse on time, and pulse off time. The taguchi 3 x 3 x 3 design is used as an experimental design.The best parameter level obtained is current 40 ampere, pulse on time 200 µs, pulse off time 20 µs.


2021 ◽  
Vol 118 (6) ◽  
pp. 615
Author(s):  
Narayanasamy Ananthi ◽  
Uthirapathi Elaiyarasan ◽  
Vinaitheerthan Satheeshkumar ◽  
Chinnamuthu Senthilkumar ◽  
Subbarayan Sathiyamurthy ◽  
...  

Magnesium and its alloys play a vital role in various applications such as automobile, aircraft, biomedical and military etc. Mg alloys have superior characteristics such as light weight, high strength, good damping capacity and easily castability etc. Eventhough it has attractive range of properties, the machining of magnesium alloys using conventional machining methods is difficult. To overcome that issue, non traditional machining is considered as a potential process. EDM is an electro thermal process extensively used for machining hard materials. In this investigation, the ZE41A magnesium alloy is machined using EDM with copper electrode. In order to improve surface characteristics such as material removal rate (MRR) and surface roughness (SR), various parameters namely current, pulse on time and pulse off time were selected. The regression values of MRR and SR are 97.20% and 99.62% respectively indicating an empirical relationship between the parameters and responses. Pulse off time was found as a significant parameter on the response followed by pulse on time and current. MRR and SR increased with increasing current, pulse on time and pulse off time. At a current of 5A, the produced spark density is high so that the removed quantity of material from the workpiece is high. At a pulse on time of 95 μs, the spark intensity is high affecting the local temperature in the machined zone, and hence MRR increases. SR drastically increases at increasing current. At higher current, large size crater are observed on the machined surface that made the surface rough, and hence SR increases.


2021 ◽  
Vol 1028 ◽  
pp. 391-396
Author(s):  
Muhammad Firly Firmansyah ◽  
Suwarno Suwarno ◽  
Yanuar Rohmat Aji Pradana ◽  
Suprayitno Suprayitno

Electrical discharge machining (EDM) is a non-conventional process that is widely used for high-precision machining, complex product shapes, and high hardness materials. The EDM mechanism is based on the thermoelectric energy between the electrode and the workpiece. The EDM process has many parameters that can be adjusted, such as discharge current, voltage, pulse on time, pulse off time, electrode polarity, workpiece material, electrode material, dielectric fluid type, flushing pressure, flushing direction and flushing method. This study aims to find the parameters of the EDM process to optimize its productivity indicated by material removal rate (MRR) and its quality indicated by surface roughness of SS-316 material. The varied parameters were discharge current, pulse on time, and pulse off time with 3 levels for each parameter. Fractional orthogonal array L9 were applied for three 3-level variables. Performance fluctuation due to noise factors were simply approximated by 3 replicating measurements to estimate mean and standard deviation. Taguchi S/N ratio were adopted as robustness index for the optimum parameter design. The optimization results show that the discharge current 30A, pulse on time 100μs, and pulse off time 8μs are the optimum for MRR. As for surface roughness, the discharge current is 10A, pulse on time is 100μs, and pulse off time is 8μs. The only different of EDM parameter for optimum MRR and optimum Ra is discharge current.


Sign in / Sign up

Export Citation Format

Share Document