scholarly journals Optimal PID and fuzzy logic based position controller design of an overhead crane using the Bees Algorithm

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Esmael Adem Esleman ◽  
Gürol Önal ◽  
Mete Kalyoncu

AbstractDifferent industrial applications frequently use overhead cranes for moving and lifting huge loads. It applies to civil construction, metallurgical production, rivers, and seaports. The primary purpose of this paper is to control the motion/position of the overhead crane using a PID controller using Genetic Algorithms (GA) and Bee Algorithms (BA) as optimization tools. Moreover, Fuzzy Logic modified PID Controller is applied to obtain better controller parameters. The mathematical model uses an analytical method, and the PID model employs Simulink in MATLAB. The paper presents the PID parameters determination with a different approach. The development of membership functions, fuzzy rules employ the Fuzzy Logic toolbox. Both inputs and outputs use triangular membership functions. The result shows that the optimized value of the PID controller with the Ziegler-Nichols approach is time-consuming and will provide only the initial parameters. However, PID parameters obtained with the optimization method using GA and BA reached the target values. The results obtained with the fuzzy logic controller (0.227% overshoot) show improvement in overshoot than the conventional PID controller (0.271% overshoot).

This paper explains the mathematical modelling and controller design of Two Tank Interacting System (TTIS) for a non-linear process. To design the non-linear process using Matlab Simulink and control the process using conventional PID controller and Fuzzy Logic Controller (FLC). A comparative study was conducted extensively made to examine which controller suits well for the non-linear process through the response observed.


1970 ◽  
Vol 5 (1.) ◽  
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Malek Alkayyali ◽  
Péter Tamás Szemes

This paper presents hybrid stepper motor (is a type of stepping motor) modelling and simulation which is widely used a kind of motor in industrial applications. In this study, the stepper motor was modelled using bond graph technique and simulation for desired position was executed on LabVIEWgraphical interface. Then, firstly a convenient PID controller was designed for position, speed and current and PID close loopresponse was obtained for position control. Then, PID parameters for each controller were arranged separately to obtain good response Secondly, Fuzzy Logic controller applied to the system and its response was obtained. Finally, both responses are compared. According to comparison, it was observed that Fuzzy Logic controller’s response is better than PID’s. (In this paper, all shown responses were observed for 120 degree desired position)


This paper addresses the problem of position control and stabilization for the two wheeled balancing robot. A mathematical model is derived based on the robot’s position and tilt angle and a fuzzy logic control is proposed for the balancing robot control. The fuzzy logic controller performance is compared with a conventional PID controller to show the difference between them. Both controllers were tested on the balancing robot in simulation using MATLAB software and the results were put together for a comparative point of view. The simulations shows a relative advantage for the fuzzy logic controller over the conventional PID controller especially in reducing the time required for stabilization which takes about 2 seconds and almost without overshoot while in the PID case the robot will have about 10% overshoot in position and about 20 degrees in tilt angle.


Author(s):  
Sudesh Rana

Now a day, in many industries different types of controllers (PD, PID, PLC, FLC etc.) are used. One of them is fuzzy logic controller. Here we develop a PID like fuzzy logic controller for industrial application, such application is water purification plant. For developing the PID like FLC, first we have to design a PID algorithm than we develop an algorithm for fuzzy logic controller. By comparing this two of controller we will develop a PID like FLC. A simple PID controller is sum of three type of controller proportional, integral and derivative controller, after simulated on MATLAB. Same cases we can be develop a structure of FLC for water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical rates at rates, related to water quality [13][2]. The feed of chemical rate judged and determined by the skilled operator. Here we try to develop an FLC algorithm so that the feed rate of coagulant is can be judged automatically without any skilled operator, than compose a PID like FLC for water purification plant process.


2014 ◽  
Vol 285 ◽  
pp. 35-49 ◽  
Author(s):  
Ricardo Martínez-Soto ◽  
Oscar Castillo ◽  
Luis T. Aguilar

Sign in / Sign up

Export Citation Format

Share Document