scholarly journals DEVELOPMENT OF PID LIKE FLC ALGORITHM FOR INDUSTRIAL APPLICATIONS

Author(s):  
Sudesh Rana

Now a day, in many industries different types of controllers (PD, PID, PLC, FLC etc.) are used. One of them is fuzzy logic controller. Here we develop a PID like fuzzy logic controller for industrial application, such application is water purification plant. For developing the PID like FLC, first we have to design a PID algorithm than we develop an algorithm for fuzzy logic controller. By comparing this two of controller we will develop a PID like FLC. A simple PID controller is sum of three type of controller proportional, integral and derivative controller, after simulated on MATLAB. Same cases we can be develop a structure of FLC for water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical rates at rates, related to water quality [13][2]. The feed of chemical rate judged and determined by the skilled operator. Here we try to develop an FLC algorithm so that the feed rate of coagulant is can be judged automatically without any skilled operator, than compose a PID like FLC for water purification plant process.

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Esmael Adem Esleman ◽  
Gürol Önal ◽  
Mete Kalyoncu

AbstractDifferent industrial applications frequently use overhead cranes for moving and lifting huge loads. It applies to civil construction, metallurgical production, rivers, and seaports. The primary purpose of this paper is to control the motion/position of the overhead crane using a PID controller using Genetic Algorithms (GA) and Bee Algorithms (BA) as optimization tools. Moreover, Fuzzy Logic modified PID Controller is applied to obtain better controller parameters. The mathematical model uses an analytical method, and the PID model employs Simulink in MATLAB. The paper presents the PID parameters determination with a different approach. The development of membership functions, fuzzy rules employ the Fuzzy Logic toolbox. Both inputs and outputs use triangular membership functions. The result shows that the optimized value of the PID controller with the Ziegler-Nichols approach is time-consuming and will provide only the initial parameters. However, PID parameters obtained with the optimization method using GA and BA reached the target values. The results obtained with the fuzzy logic controller (0.227% overshoot) show improvement in overshoot than the conventional PID controller (0.271% overshoot).


1970 ◽  
Vol 5 (1.) ◽  
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Malek Alkayyali ◽  
Péter Tamás Szemes

This paper presents hybrid stepper motor (is a type of stepping motor) modelling and simulation which is widely used a kind of motor in industrial applications. In this study, the stepper motor was modelled using bond graph technique and simulation for desired position was executed on LabVIEWgraphical interface. Then, firstly a convenient PID controller was designed for position, speed and current and PID close loopresponse was obtained for position control. Then, PID parameters for each controller were arranged separately to obtain good response Secondly, Fuzzy Logic controller applied to the system and its response was obtained. Finally, both responses are compared. According to comparison, it was observed that Fuzzy Logic controller’s response is better than PID’s. (In this paper, all shown responses were observed for 120 degree desired position)


2019 ◽  
Vol 59 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Erol Can

A 9-level inverter with a boost converter has been controlled with a fuzzy logic controller and a PID controller for regulating output voltage applications on resistive (R) and inductive (L), capacitance (C). The mathematical model of this system is created according to the fuzzy logic controlling new high multilevel inverter with a boost converter. The DC-DC boost converter and the multi-level inverter are designed and explained, when creating a mathematical model after a linear pulse width modulation (LPWM), it is preferred to operate the boost multi-level inverter. The fuzzy logic control and the PID control are used to manage the LPWM that allows the switches to operate. The fuzzy logic algorithm is presented by giving necessary mathematical equations that have second-degree differential equations for the fuzzy logic controller. After that, the fuzzy logic controller is set up in the 9-level inverter. The proposed model runs on different membership positions of the triangles at the fuzzy logic controller after testing the PID controller. After the output voltage of the converter, the output voltage of the inverter and the output current of the inverter are observed at the MATLAB SIMULINK, the obtained results are analysed and compared. The results show the demanded performance of the inverter and approve the contribution of the fuzzy logic control on multi-level inverter circuits.


2012 ◽  
Vol 220-223 ◽  
pp. 402-405
Author(s):  
Li Hong Dong

According to the nonlinearity and time-variation of the positioning control in hydraulic system, a kind of Hybrid Fuzzy-PID Controller with Coupled Rules (HFPIDCR) is proposed. In this control system, the bulk modulus is considered as a variable. The novelty of this controller is to combine the fuzzy logic and PID controllers in a switching condition. Simulation results of the HFPIDCR are compared with the results of traditional PID, Fuzzy Logic Controller (FLC), and Hybrid Fuzzy-PID Controller (HFPID). It is demonstrated that the HFPIDCR has fast response, short adjustment time, high control precision and other advantages, and it can meet the requirements of the positioning control in hydraulic system.


Sign in / Sign up

Export Citation Format

Share Document