Phenolics compounds, evaluation of Alpha-amylase, alpha‐glucosidase inhibitory capacity and antioxidant effect from Globularia alypum L

Author(s):  
Khaoula Ouffai ◽  
Rachid Azzi ◽  
Fayza Abbou ◽  
Souad Mahdi ◽  
Imad Abdelhamid El Haci ◽  
...  
Author(s):  
P. Reka ◽  
Thahira Banu A. ◽  
M. Seethalakshmi

Objective: The present work was to investigate the alpha amylase and alpha-glucosidase inhibitory activity of the selected edible seaweeds.Methods: The seaweeds namely Acanthophora spicifera, Gracilaria corticata, Gracilaria edulis, Ulva lactuca and Ulva reticulata were selected for this study. Six and eight hours of ethanol and aqueous extract were used for the estimation of alpha amylase using DNS method and alpha-glucosidase inhibition activity.Results: The study reported that the solvent from ethanol and aqueous in eight hours of extraction showed a higher inhibitory activity than six hours of extraction. Maximum of 89.1±0.96 and 79.55±3.08 percent of alpha-amylase and alpha-glucosidase inhibition activity were detected in the eight hours of aqueous extract (0.5 ml) of Ulva reticulata and Gracilaria edulis respectively. All the selected edible seaweeds had significant differences (p<0.05) in alpha amylase and alpha glucosidase inhibition activity between the selected seaweeds with different extracts.Conclusion: It was concluded that all the selected edible seaweeds have the potential to act as a potent inhibitor of the carbohydrate hydrolyzing enzyme. Thus, it was clear from the study that seaweeds incorporated in small amounts in the dishes consumed in the daily diet can bring a control on postprandial blood glucose level.


Author(s):  
Jirawat Riyaphan ◽  
Chien-Hung Jhong ◽  
May-Jwan Tsai ◽  
Der-Nan Lee ◽  
Max K. Leong ◽  
...  

The inhibition of alpha-glucosidase and alpha-amylase is one of clinic strategies for remedy the type II diabetes. Herbal medicines are reported to alleviate hyperglycemia. However, the constituents from those sources whether are targeted to the alpha-glucosidase and alpha-amylase still unexplored. This study attempted to select the compounds for efficacy of hypoglycemia via cellular and mouse levels. The results illustrated that the cytotoxicity in all tested compounds at various concentrations except the concentration of 16-hydroxy-cleroda-3,13-dine-16,15-olide (HCD) at 30 &micro;M were not significant difference (p &gt; 0.05) when compared with the untreated control. Acarbose (reference drug), Antroquinonol, Catechin, Quercetin, Actinodaphnine, Curcumin, HCD, Docosanol, Tetracosanol, Berberine, and Rutin could effectively inhibit the alpha-glucosidase activity of Caco-2 cells when compared with the control (maltose). The compounds (Curcumin, HCD, Tetracosanol, Antroquinonol, Berberine, Catechin, Actinodaphnine, and Rutin) could reduce blood sugar level at 30 min in tested mice. The effects of tested compounds on area under curve (AUC) were significant (p &lt; 0.05) among Acarbose, Tetracosanol, Antroquinonol, Catechin, Actinodaphnine, and Rutin along with Berberine and Quercetin. In in vitro (alpha-glucosidase) with in vivo (alpha-amylase) experiments suggest that bioactive compounds can be a potential inhibitor candidate of alpha-glucosidase and alpha-amylase for the alleviation of type II diabetes.


1978 ◽  
Vol 24 (9) ◽  
pp. 1620-1624 ◽  
Author(s):  
W H Porter ◽  
R E Roberts

Abstract We evaluated the Harleco alpha-glucosidase/hexokinase/glucose-6-phosphate dehydrogenase-coupled alpha-amylase method, bu use of the GEMSAEC centrifugal analyzer. Performance evaluation included kinetic studies of substrate and maltose hydrolysis as well as effects of endogenous glucose and fructose. The reagent was found to give a linear response with alpha-amylase activity to greater than 1200 U/liter. Within-run precision resulted in coefficients of variation (CV) of 0.9 to 3.2% over the range studied. Day-to-day precision corresponded to CV's of 2.4 to 4.4% over the same range of alpha-amylase procedure was found to be good (r = 0.997) for patients' sera examined.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 421 ◽  
Author(s):  
Etsassala ◽  
Badmus ◽  
Waryo ◽  
Marnewick ◽  
Cupido ◽  
...  

The re-investigation of a methanolic extract of Salvia africana-lutea collected from the Cape Floristic Region, South Africa (SA), afforded four new abietane diterpenes, namely 19-acetoxy-12-methoxycarnosic acid (1), 3β-acetoxy-7α-methoxyrosmanol (2), 19-acetoxy-7α-methoxyrosmanol (3), 19-acetoxy-12-methoxy carnosol (4), and two known named clinopodiolides A (5), and B (6), in addition to four known triterpenes, oleanolic, and ursolic acids (7, 8), 11,12-dehydroursolic acid lactone (9) and β-amyrin (10). The chemical structural elucidation of the isolated compounds was determined on the basis of one and two dimensional nuclear magnetic resonance (1D and 2D NMR), high-resolution mass spectrometry (HRMS), ultra violet (UV), fourier transform infrared (IR), in comparison with literature data. The in vitro bio-evaluation against alpha-glucosidase showed strong inhibitory activities of 8, 10, and 7, with the half inhibitory concentration (IC50) values of 11.3 ± 1.0, 17.1 ± 1.0 and 22.9 ± 2.0 µg/mL, respectively, while 7 demonstrated the strongest in vitro alpha-amylase inhibitory activity among the tested compounds with IC50 of 12.5 ± 0.7 µg/mL. Additionally, some of the compounds showed significant antioxidant capacities. In conclusion, the methanolic extract of S. africana-lutea is a rich source of terpenoids, especially abietane diterpenes, with strong antioxidant and anti-diabetic activities that can be helpful to modulate the redox status of the body and could therefore be an excellent candidate for the prevention of the development of diabetes, a disease where oxidase stress plays an important role.


Author(s):  
NANTAPORN DINLAKANONT ◽  
CHANIDA PALANUVEJ ◽  
NIJSIRI RUANGRUNGSI

Objective: Starch metabolizing enzyme inhibitors are able to retard postprandial glucose absorption. This study aimed to investigate the in vitro inhibitory activities of alpha-glucosidase and alpha-amylase of three Malvaceous weeds i.e. Sidaacuta Burm. f., Abutilon indicum (Linn.) Sweet and Malvastrumcoromandelianum (Linn.) Garcke. Methods: The stems, roots and leaves of S. acuta, A. indicum and M. coromandelianum were sequentially extracted in dichloromethane and methanol, respectively. All fractions were tested for the inhibitory activities on yeast alpha-glucosidase, rat intestinal alpha-glucosidase and porcine alpha-amylase. p-Nitrophenyl-α-D-glucopyranoside and 2-chloro-4 nitrophenol-α-D- maltotrioside were used as the substrate for glucosidase and amylase respectively. Results: The dichloromethane fraction of the roots and stems from A. indicum and dichloromethane as well as methanolic fractions of the stems of M. coromandelianum could inhibit yeast alpha-glucosidase compared to 1-deoxynojirimycin with the IC50 of 0.36, 0.45, 0.48, 0.48 and 0.58 mg/ml respectively. A. indicum root methanolic fraction had the highest inhibitory effect on rat alpha-glucosidase activity compared to 1-deoxynojirimycin with the IC50 of 0.08 and 0.11 mg/ml respectively. M. coromandelianum, the dichloromethane fraction of roots and the methanolic fraction of stems, showed the strongest effect on alpha-amylase inhibition compared to acarbose with the IC50 of 0.07, 0.07 and 2.7 mg/ml, respectively. Conclusion: S. acuta, A. indicum and M. coromandelianum dichloromethane and methanolic fractions of the root, stem and leaf parts demonstrated an appreciable inhibitory activity on alpha-amylase from porcine, alpha-glucosidase from Saccharomyces cerevisiae and from rat intestine compared to 1-deoxynojirimycin and acarbose.


2021 ◽  
pp. 1-3
Author(s):  
Srinivasan S ◽  
Rayar A

Biologically active polyphenol, D-catechin was isolated from Decalepis hamiltonii and characterized by IR, 1 H- NMR 13C- NMR and evaluation of its in-vitro α-amylase and α-glucosidase inhibition activities. Bioactive compounds are deposited in many parts of the plants, such as in roots, stems, leaves, flowers, fruits and seeds. They protect the plants from diseases and contribute aroma, color and flavor. Inhibitors 𝛼 - amylase and 𝛼-glucosidase delay the breaking down of carbohydrates in the small intestine and lower the postprandial blood glucose excursion. Methanolic extract showed the greater % inhibition of the alpha glucosidase enzyme compared to D-catechin. The herbal extracts produced a slightly weak alpha glucosidase enzyme inhibition when compared with alpha amylase.


Sign in / Sign up

Export Citation Format

Share Document