scholarly journals Enhanced rhizoremediation of crude oil–contaminated mangrove swamp soil using two wetland plants (Phragmites australis and Eichhornia crassipes)

2019 ◽  
Vol 50 (3) ◽  
pp. 715-728
Author(s):  
Monday Ubogu ◽  
Lucky O. Odokuma ◽  
Ejiro Akponah
2020 ◽  
Vol 143 ◽  
pp. 02020
Author(s):  
Tao Ma ◽  
Wenhui Zhang ◽  
Hongkai Fan ◽  
Lizhu Huang ◽  
Qing Xu ◽  
...  

The remediation performances of heavy metals contaminaged sediment by hydrophytes including Alternanthera Philoxeroides, Canna indica L., Nymphaea tetragona, Typha orientalis, Phragmites australis, Phragmites australis, Hydrilla verticillata, Cyperus alternifolius L., Eichhornia crassipes, Acorus tatarinowii, Digitaria sanguinalis (L.) Scop were investigated through batch pot experiments. The results showed that the enrichment effect of Pb was better in Alternanthera Philoxeroides and Acorus tatarinowii with the BCFs of 4.42 and 1.22, and the TFs of 7.84 and 4.23, respectively. The Cr enrichment effects by Nymphaea tetragona, Hydrilla verticillata and Eichhornia crassipes (Mart.) Solms were better, which BCFs were 2.69, 1.91 and 3.71, and which TFs were 7.93, 2.07 and 2.18, respectively.


Oil-mining companies have to subject waste water to expensive treatment before it can be discharged on land or at sea to comply with environment regulations. This study aims at developing an economically valid and applied comprehensive solution that takes advantage of oil-contaminated brackish salty water disposed by the General Petroleum Company in Egypt, and maximizes its economic value and ensures its safe use in the environment. Three fields in Ras Sudr site of the company were inspected. Two main common plant species to Ras Sudr, Tamarix niloteca tree and Phragmites australis grass that is tolerant to salinity. These plants together with their associated bacteria of endophytes and rhizosphere that utilize crude oil as a carbon and energy source was considered a useful combination of bioremediation agents. Initially, soil characteristics were determined by analyzing soil samples taken at depths of 25cm and 50cm, and bacterial content of soil around the roots and within plant tissues was examined. Discharged water (@50 m3 day-1) was used in irrigating plant fields in amounts sufficient to plant needs only. Growth parameters of plants were assessed four times in an interval of two months. Preliminary results indicated that growth rates in plant length, number of branches and stem girth, and chlorophyll content of oil-polluted water irrigated plants of the two plant species were not significantly different (p≤0.05) of plants irrigated with fresh water. The number of bacteria in the soil increase9d significantly (p≥0.05) over time, and the color of residual oil in the soil was fading, indicating the its decomposition. Soil under Tamarix niloteca contained similar quantities of microorganisms in both coastal saline-alkali soil and inland arid region indicating that colonization of the plant provided stable growth conditions for microorganisms. These plants and endophytes and rhizosphere combination played the main rule in the in-situ bioremediation process, and were efficient in removing around 70 % of the initial traces of crude oil within two months. They also provide safe environment and romote plant growth. They were able to decompose hydrocarbons and residues of crude oil as they possess special physiological mechanisms (PGPR) turns polluted water to safe water for human and environment, and meanwhile achieving the objectives of this work. These results indicated that Tamarix niloteca and Phragmites australis are promising agents for treating oil-polluted salty wastewater in other fields of crude oil mining.


2021 ◽  
Vol 2 (2) ◽  
pp. 91-102
Author(s):  
O. R. Aina ◽  
E. I. Atuanya ◽  
C. E. Oshoma ◽  
A. E. Omotayo ◽  
O. N. Olaleye

Rhizophora racemosa (red mangrove tree) belongs to the family Rhizophoraceae; it is an important constituent of the mangrove swamp in Niger Delta, an oil producing region in Nigeria. The remediation of soils containing organic pollutants is possible with the use of microbial communities when the ecology is understood for potentials maximization. This study investigated the biodegradation potential of rhizospheric microorganisms of Rhizophora racemosa in crude oil- contaminated mangrove swamp in the Niger Delta.The total microbial count was determined by the serial dilution method. The hydrocarbon-utilizing bacteria and fungi were enumerated using Mineral Salts Agar containing crude oil as the sole carbon source. The biodegradation potential of these rhizomicrobes was determined using screen test, shake flask degradation tests, Total Organic Gas (TOG) and Total Petroleum Hydrocarbon (TPH) InfraCal Analyzer (HATR-T2 and CH). The turbidity, total organic gas (TOG-N) and total petroleum hydrocarbon were measured weekly for twenty-eight days. Hydrocarbon-degrading microbes isolated from the rhizosphere were identified as Marinococcus sp., Azotobacter sp., Acinetobacter sp. Aspergillus niger, Aspergillus flavus and Candida albicans. The highest rate of TPH reduction was recorded in Acinetobacter sp. (from 150 mg/L on day 1 to ˂0.0031 mg/L on day 14). This was followed by Candida albicans (148mg/L on day 1 to 2.68mg/L on day 28) and Aspergillus flavus (150mg/L on day 1 to 4.21mg/L on day 28) In conclusion, it can be inferred that the some rhizospheric microbes of Rhizophora racemosa can efficienctly degrade hydrocarbon up to 100% rate over a period of 28 days.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 262 ◽  
Author(s):  
Ayman M. Atta ◽  
Nermen H. Mohamed ◽  
Ahmad K. Hegazy ◽  
Yasser M. Moustafa ◽  
Rodina R. Mohamed ◽  
...  

Crude oil pollution of water bodies is a worldwide problem that affects water ecosystems and is detrimental to human health and the diversity of living organisms. The objective of this study was to assess the ability of water hyacinth (Eichhornia crassipes (Mart.) Solms) combined with the presence of magnetic nanoparticles capped with natural products based on Myrrh to treat fresh water contaminated by crude petroleum oil. Magnetic nanoparticles based on magnetite capped with Myrrh extracts were prepared, characterized, and used to adsorb heavy components of the crude oil. The hydrophobic hexane and ether Myrrh extracts were isolated and used as capping for magnetite nanoparticles. The chemical structures, morphologies, particle sizes, and magnetic characteristics of the magnetic nanoparticles were investigated. The adsorption efficiencies of the magnetic nanoparticles show a greater efficiency to adsorb more than 95% of the heavy crude oil components. Offsets of Water hyacinth were raised in bowls containing Nile River fresh water under open greenhouse conditions, and subjected to varying crude oil contamination treatments of 0.5, 1, 2, 3, and 5 mL/L for one month. Plants were harvested and separated into shoots and roots, oven dried at 65 °C, and grounded into powder for further analysis of sulphur and total aromatic and saturated hydrocarbons, as well as individual aromatic constituents. The pigments of chlorophylls and carotenoids were measured spectrophotometrically in fresh plant leaves. The results indicated that the bioaccumulation of sulphur in plant tissues increased with the increased level of oil contamination. Water analysis showed significant reduction in polyaromatic hydrocarbons. The increase of crude oil contamination resulted in a decrease of chlorophylls and carotenoid content of the plant tissues. The results indicate that the water hyacinth can be used for remediation of water slightly polluted by crude petroleum oil. The presence of magnetite nanoparticles capped with Myrrh resources improved the remediation of water highly polluted by petroleum crude oil.


2019 ◽  
Vol 39 (24) ◽  
Author(s):  
王婉丽 WANG Wanli ◽  
袁庆叶 YUAN Qingye ◽  
董必成 DONG Bicheng ◽  
高俊琴 GAO Junqin ◽  
韩广轩 HAN Guangxuan ◽  
...  

2017 ◽  
Vol 8 (5) ◽  
pp. 252-256
Author(s):  
Thi Nguyet Vu ◽  
Van Tua Tran ◽  
Dinh Kim Dang ◽  
Thi Kim Anh Bui ◽  
Vu Hai Yen

Despite a positive contribution to economic – social development, the growth of piggeries has caused heavily environmental pollution. Currently, treated wastewater of pig farms unfortunately does not meet the national discharge standards yet. This paper presents some research results on the removing COD, nitrogen and phosphorus in piggery wastewater after anaerobic (biogas) process at pilot scale by the combined system using Phragmites australis, Cyperus alternifolius, Vetiveria zizanioides and Eichhornia crassipes. The experimental results showed that the wastewater loading rate of 47.35 l/m2.day with initial concentrations of 203.24 mg COD/l, 111.94 mgTN/l and 13.61 mgTP/l gave removal efficiency of 71.66 %, 79.26 % and 69.65 %, respectively. Thus, the removed quantity of total nitrogen (TN) and total phosphorus (TP) was of 4201.35 mg TN/m2.day và 448.76mg TP/m2.day. The obtained results indicated that the flow wetland system, using Phragmites australis, Cyperus alternifolius, Vetiveria zizanioides and Eichhornia crassipes has a rather high COD, TN and TP removal efficiency with simple operation so that it could be feasible if applied for treating pig wastewater. However, the system should be functioned longer for taking data and for evaluating its stability. Mặc dù có những đóng góp tích cực cho sự phát triển kinh tế - xã hội, việc phát triển chăn nuôi lợn đã gây ô nhiễm môi trường nghiêm trọng. Hiện nay, nước thải chăn nuôi lợn từ các cơ sở chăn nuôi sau xử lý vẫn chưa đáp ứng được các tiêu chuẩn thải của quốc gia và tiêu chuẩn ngành. Bài báo này trình bày kết quả nghiên cứu về khả năng loại bỏ COD, nitơ (N) và phôtpho (P) trong nước thải chăn nuôi lợn đã qua xử lý bằng hầm biogas của hệ thống phối hợp cây Sậy, Thủy Trúc, cỏ Vetiver và Bèo Tây ở qui mô pilot. Kết quả thực nghiệm ở tải lượng 47,35 l/m2.ngày, với COD, tổng nitơ (TN) và tổng phôtpho (TP) đầu vào trung bình là 203,24 mg/l, 111,94 mg/l và 13,61 mg/l, tương ứng, thì hiệu suất xử lý lần lượt là 71,66 %; 79,26 % và 69,65 %. Như vậy lượng TN và TP loại bỏ là 4201,35 mgN/m2.ngày và 448,76 mgP/m2.ngày. Kết quả nhận được cho thấy hệ thống sử dụng cây Sậy, Thủy Trúc, cỏ Vetiver và Bèo Tây có hiệu quả loại bỏ COD, TN và TP khá cao trong khi vận hành đơn giản nên có triển vọng áp dụng trong điều kiện thực tế để xử lý nước thải chăn nuôi lợn. Tuy nhiên để đánh giá tính ổn định, hệ thống cần được hoạt động với thời gian lâu dài hơn.


2020 ◽  
Vol 5 (2) ◽  
pp. 151-156
Author(s):  
Jonathan Chukwudi Iwubeh ◽  
Izundu Alexandra Ikechukwu ◽  
Egboka Tochukwu Praise ◽  
Anukwuorji Chidozie Azubuike ◽  
Anyaegbu Chiamaka Francise

Many aquatic plants existing in the Niger Delta area of Nigeria are at the risk of extinction due to oil spill. The present study was aimed at investigating the effect of different concentrations of crude oil on the morphology and growth performance of the hydrophyte, Eichhornia crassipes present in coastal waters of Nigeria’s Niger Delta region, where crude oil exploitation as well as oil spill is high. The plant, E. crassipes was subjected to varying concentrations of crude oil treatments (1.25%, 2.5%, 5%, 7.5% and 10%). Each treatment was replicated three times. The performance was measured using various growth parameters which include height, number of leaves, leaf area, fresh weight and dry weight. The results showed that the control plant performed better than the treated plants with respect to all the morphological characters considered. The control plant of E. crassipes produced a height of 7.56±0.028 from an initial height of 6.02±0.028. Among the treated plants, 1.25% and 2.5% promoted height, leaf area, number of leaves, fresh and dry weight up to the 6th week of growth while 7.5% and 10% decreased plant height up to the 4th week. The E. crassipes treated with 7.5% and 10% crude oil concentrations died 6 weeks following the treatments. The ability of E. crassipes to tolerate the different levels of crude oil was authenticated in this study. However, the study showed that there is a limit of sustenance of petroleum hydrocarbons pollution for E. crassipes above which toxicity will apply.


Sign in / Sign up

Export Citation Format

Share Document