Strength enhancement in high silica wood ash stabilized lateritic soil using sodium tetraoxosulphate VI (Na2SO4) as activator

Author(s):  
Johnson R. Oluremi ◽  
Walied A. Elsaigh ◽  
Bolanle D. Ikotun ◽  
Olukorede M. Osuolale ◽  
Solomon I. Adedokun ◽  
...  
2018 ◽  
Vol 37 (2) ◽  
pp. 533-547 ◽  
Author(s):  
Johnson R. Oluremi ◽  
Stephen T. Ijimdiya ◽  
Adrian O. Eberemu ◽  
Kolawole J. Osinubi

2019 ◽  
Vol 25 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Johnson R. Oluremi ◽  
Adrian O. Eberemu ◽  
Stephen T. Ijimdiya ◽  
Kolawole J. Osinubi

ABSTRACTInherent variability in engineering properties of lateritic soil in relation to its plasticity, permeability, strength, workability, and natural moisture content, has made it an unpredictable material for use in civil engineering works, resulting in the need for its treatment by stabilization. A lateritic soil classified as A-6(6) and CL, according to American Association of State Highway and Transportation Officials and Unified Soil Classification System of ASTM (2011), was treated with up to 10 percent waste wood ash (WWA). Compaction was carried out using four energies, namely, reduced British Standard light, British Standard light (BSL), West African Standard, and British Standard heavy, on samples, which were then examined for hydraulic conductivity, volumetric shrinkage, and unconfined compressive strength as major criteria for use as liner and for the development of acceptable zones. Specimens with 4 percent WWA content compacted with a minimum BSL energy satisfied the maximum hydraulic conductivity (k) value of 1 × 10−9 m/s, maximum volumetric shrinkage strain of 4 percent, and minimum unconfined compressive strength value of 200 kN/m2 required for use as liner in engineered landfills. The overall acceptable zone was enlarged for up to 4 percent WWA content, thereby accommodating higher moulding water content, but the minimum compactive effort required to achieve it became reduced. The beneficial treatment of lateritic soil with up to 4 percent WWA will perform satisfactorily as liner and covers in waste containment application and will minimize the pollution and environmental impact of wood waste disposal.


2005 ◽  
Vol 5 (8) ◽  
pp. 1479-1483 ◽  
Author(s):  
O.O. Amu ◽  
I. K. Adewumi . ◽  
A.L. Ayodele . ◽  
R.A. Mustapha . ◽  
O.O. Ola .

Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 374 ◽  
Author(s):  
B. E. Yusiharni ◽  
H. Ziadi ◽  
R. J. Gilkes

Standard AOAC methods of chemical analysis have been used to characterise the industrial byproducts partly burnt chicken litter ash (CLA), totally burnt chicken litter ash (CLAT), wood ash (WA), and iron smelting slag, for use as a combined liming agent and phosphate (P) fertiliser. These materials are effective liming agents with calcium carbonate equivalence of 93–99%. Total P concentrations of CLA (3.6% P), CLAT (4.75% P), slag (0.26% P), and WA (0.44% P) indicate that they would function as P fertilisers when applied at the high rates required for liming soils. The form of P in slag is unknown; CLA and CLAT consist mostly of mixtures of the phosphate mineral apatite with calcite and quartz. WA consists mostly of calcite, quartz, and various salts. For long extraction times, total P dissolved increased in the sequence CA (citric acid) > NAC (neutral ammonium citrate) > AAC (alkaline ammonium citrate). Little apatite persisted in residues of CLA and CLAT after 120 h of CA extraction but considerable amounts of apatite remained in NAC and AAC residues. A glasshouse P-response experiment was carried out with ryegrass on an acid lateritic soil with the application of various levels of phosphate as chicken litter ash, iron smelting slag, and wood ash. Monocalcium phosphate (MCP), dicalcium phosphate (DCP), and rock phosphate (RP) were included for comparison purposes. Based on plant yield data, the relative agronomic effectiveness (RE) of DCP compared to MCP was 57%, 72%, 73%, and 94%, respectively, for 4 successive harvests, for RP was 24%, 34%, 70%, and 56%, for chicken litter ash was 13%, 16%, 33%, and 39%, for slag was 8%, 9%, 16%, and 10%, for WA was 6%, 9%, and was effectively zero for the final 2 harvests. For no extraction time was the P soluble in the 3 citrate extractants a reliable predictor of the agronomic effectiveness of these materials as P fertilisers established by plant growth measurements.


Author(s):  
J. R. Oluremi ◽  
A. O. Eberemu ◽  
T. S. Ijimdiya ◽  
K. J. Osinubi

Author(s):  
Eugene J. Amaral

Examination of sand grain surfaces from early Paleozoic sandstones by electron microscopy reveals a variety of secondary effects caused by rock-forming processes after final deposition of the sand. Detailed studies were conducted on both coarse (≥0.71mm) and fine (=0.25mm) fractions of St. Peter Sandstone, a widespread sand deposit underlying much of the U.S. Central Interior and used in the glass industry because of its remarkably high silica purity.The very friable sandstone was disaggregated and sieved to obtain the two size fractions, and then cleaned by boiling in HCl to remove any iron impurities and rinsed in distilled water. The sand grains were then partially embedded by sprinkling them onto a glass slide coated with a thin tacky layer of latex. Direct platinum shadowed carbon replicas were made of the exposed sand grain surfaces, and were separated by dissolution of the silica in HF acid.


Sign in / Sign up

Export Citation Format

Share Document