Analysis of California Bearing Ratio Values of Lime and Wood Ash Stabilized Lateritic Soil

2005 ◽  
Vol 5 (8) ◽  
pp. 1479-1483 ◽  
Author(s):  
O.O. Amu ◽  
I. K. Adewumi . ◽  
A.L. Ayodele . ◽  
R.A. Mustapha . ◽  
O.O. Ola .
2017 ◽  
Vol 25 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olumide M. Ogundipe ◽  
Opeyemi E. Oluwatuyi

Abstract The research investigated the effects of palm kernel shell ash (PKSA) on lime-stabilized lateritic soil. Preliminary tests were performed on three soil samples, i.e., L1, L2 and L3 for identification; the results showed that L1 was A-7-6, L2 was A-7-6, and L3 was A-7-6. The optimum amount of lime for each of the soil samples was achieved. The optimum amount for L1 was 10%, for L2, 8% and for L3, 10%; at these values they recorded the lowest plasticity indexes. The further addition of PKSA was performed by varying the amount of PKSA and lime added to each of the soil samples. The addition of 4% PKSA+ 6% lime, the addition of 4% PKSA + 4% lime, and the addition of 4% PKSA + 6% lime increased the California Bearing Ratio (CBR) to the highest values for L1, L2 and L3 from 8.20%. It was concluded that PKSA can be a suitable complement for lime stabilization in lateritic soil.


2018 ◽  
Vol 37 (2) ◽  
pp. 533-547 ◽  
Author(s):  
Johnson R. Oluremi ◽  
Stephen T. Ijimdiya ◽  
Adrian O. Eberemu ◽  
Kolawole J. Osinubi

2019 ◽  
Vol 25 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Johnson R. Oluremi ◽  
Adrian O. Eberemu ◽  
Stephen T. Ijimdiya ◽  
Kolawole J. Osinubi

ABSTRACTInherent variability in engineering properties of lateritic soil in relation to its plasticity, permeability, strength, workability, and natural moisture content, has made it an unpredictable material for use in civil engineering works, resulting in the need for its treatment by stabilization. A lateritic soil classified as A-6(6) and CL, according to American Association of State Highway and Transportation Officials and Unified Soil Classification System of ASTM (2011), was treated with up to 10 percent waste wood ash (WWA). Compaction was carried out using four energies, namely, reduced British Standard light, British Standard light (BSL), West African Standard, and British Standard heavy, on samples, which were then examined for hydraulic conductivity, volumetric shrinkage, and unconfined compressive strength as major criteria for use as liner and for the development of acceptable zones. Specimens with 4 percent WWA content compacted with a minimum BSL energy satisfied the maximum hydraulic conductivity (k) value of 1 × 10−9 m/s, maximum volumetric shrinkage strain of 4 percent, and minimum unconfined compressive strength value of 200 kN/m2 required for use as liner in engineered landfills. The overall acceptable zone was enlarged for up to 4 percent WWA content, thereby accommodating higher moulding water content, but the minimum compactive effort required to achieve it became reduced. The beneficial treatment of lateritic soil with up to 4 percent WWA will perform satisfactorily as liner and covers in waste containment application and will minimize the pollution and environmental impact of wood waste disposal.


2021 ◽  
Vol 47 (1) ◽  
pp. 156-163
Author(s):  
Oluremi Johnson Rotimi ◽  
Bamigboye Gideon Olukunle ◽  
Afolayan Olaniyi Diran ◽  
B. Iyanda Olayinka ◽  
A. Bello Usman

Effect of spent calcium carbide (SCC) on index and strength properties of lateritic soil at differ- ent compactive efforts was assessed in this study as potential means of improving the geotechnical properties of the subsoil as well as disposing of SCC as waste. SCC was admixed with the soil using 0 to 10 % by dry weight of soil at an incremental rate of 2%. The following tests were carried out on the samples: specific gravity, Atterberg limit, particle size distribution, compaction, and California bearing ratio (CBR). Compaction and California Bearing Ratio (CBR) tests were carried out using British Standard light (BSL), West African Standard (WAS), and British Standard heavy (BSH) on both the natural and stabilized soil samples. From the investigation, atterberg limits show a reduction in the plasticity index with increasing content of SCC. The maximum dry density of the soil decreased with increasing SCC content and increased with an increase in compactive energies (BSL<WAS<BSH), while and optimum moisture content (OMC) increased correspondingly. Also, soaked and unsoaked CBR values of the stabilized lateritic soil showed an increase in strength with higher compactive effort, and SCC content up to 4% SCC addition and after that decreased in value. Based on these results, spent calcium carbide improved the geotechnical properties of this lateritic soil, and 4% SCC is recommended for its stabilization as subgrade material for pavement construction, thereby serving as an effective method of disposing SCC towards promoting a green and sustainable environment.


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 374 ◽  
Author(s):  
B. E. Yusiharni ◽  
H. Ziadi ◽  
R. J. Gilkes

Standard AOAC methods of chemical analysis have been used to characterise the industrial byproducts partly burnt chicken litter ash (CLA), totally burnt chicken litter ash (CLAT), wood ash (WA), and iron smelting slag, for use as a combined liming agent and phosphate (P) fertiliser. These materials are effective liming agents with calcium carbonate equivalence of 93–99%. Total P concentrations of CLA (3.6% P), CLAT (4.75% P), slag (0.26% P), and WA (0.44% P) indicate that they would function as P fertilisers when applied at the high rates required for liming soils. The form of P in slag is unknown; CLA and CLAT consist mostly of mixtures of the phosphate mineral apatite with calcite and quartz. WA consists mostly of calcite, quartz, and various salts. For long extraction times, total P dissolved increased in the sequence CA (citric acid) > NAC (neutral ammonium citrate) > AAC (alkaline ammonium citrate). Little apatite persisted in residues of CLA and CLAT after 120 h of CA extraction but considerable amounts of apatite remained in NAC and AAC residues. A glasshouse P-response experiment was carried out with ryegrass on an acid lateritic soil with the application of various levels of phosphate as chicken litter ash, iron smelting slag, and wood ash. Monocalcium phosphate (MCP), dicalcium phosphate (DCP), and rock phosphate (RP) were included for comparison purposes. Based on plant yield data, the relative agronomic effectiveness (RE) of DCP compared to MCP was 57%, 72%, 73%, and 94%, respectively, for 4 successive harvests, for RP was 24%, 34%, 70%, and 56%, for chicken litter ash was 13%, 16%, 33%, and 39%, for slag was 8%, 9%, 16%, and 10%, for WA was 6%, 9%, and was effectively zero for the final 2 harvests. For no extraction time was the P soluble in the 3 citrate extractants a reliable predictor of the agronomic effectiveness of these materials as P fertilisers established by plant growth measurements.


Author(s):  
Johnson R. Oluremi ◽  
Walied A. Elsaigh ◽  
Bolanle D. Ikotun ◽  
Olukorede M. Osuolale ◽  
Solomon I. Adedokun ◽  
...  

Lateritic soils at Otun Ekiti, Ekiti state, southwestern Nigeria were investigated with respect to their geotechnical properties and their suitability for subgrade and sub – base construction materials. Four disturbed lateritic soil samples (sample A, B, C and D) were selected for the various laboratory techniques. The grain size analyses, the specific gravity tests, the atterberg limit tests, compaction, California bearing ratio and shear box tests were carried out on the samples. The grain size analysis shows that sample A is gravelly silt-clayey sand. Sample B is silt – clayey gravel composition. Sample C is gravelly silt-clayey while Sample D is silt-clayey gravel. Atterberg consistency limit test indicate that sample A has 30.0%, liquid limit 19.5% plastic limit, 10.5% plasticity index, 9.1% shrinkage limit. Sample B has liquid limit of 27.0%, 16.2% plastic limit, 10.8% plasticity index and 7.4% shrinkage limit. Sample C has a liquid limit of 32.4%, plastic limit of 15.6%. It has a plastic index of 16.8%, Shrinkage limit of 9.7% while Sample D has a liquid limit of 36.2%, plastic limit of 17.7%. It has a plastic index of 18.5% and 11.1% as shrinkage limit. Thus, the soil is classified to be intermediate plasticity which can be used for sub – grade and sub – base materials. The soil samples are above the activity (A) line in the zone of intermediate plasticity (CL) which suggests that they are inorganic soils. Based on engineering use chart, the workability as construction engineering is good to fair particularly as erosion resistance in canal construction. However, the high shrinkage limit may also reduce erosion in this area because of cohesion of the plastic clay material. The California Bearing Ratio (CBR) values are within 2 – 3% (mean = 2.75%) and 2 - 4% (mean = 2.75%) in sample A and sample B respectively while California Bearing Ratio (CBR) of 2 - 4% (mean = 2.75%) and 2 – 3% (mean = 2.75%) in sample C and sample D respectively. This implies that the materials can be used as a sub-grade to base course material for support of flexible pavements. The compaction tests for the optimum water content for sample A is 15.0% and 13.0% for standard and modified proctor respectively. The standard and modified proctor for sample B is 15.0% and 14.0% respectively. The compaction tests for the optimum water content for sample C and D is 15.0% and 14.0% for standard and modified proctor respectively. The compaction tests for Sample A indicate a higher fine fraction and thus a higher optimum moisture content while sample B, C and D has higher coarse fraction with lower optimum moisture content. The cohesion falls within 70-90Kpa (mean = 79Kpa) and the angle of internal friction ranges from 260 - 320 with mean of 280 for standard and modified compaction energies respectively. The results obtained from geotechnical analysis suggest that the soil is good to fair as erosion resistance in canal construction because of its high bearing capacity and it can also be used as sub – grade and base course in road construction. Keywords: Lateritic soil, Construction, Erosional and Geotechnical.


Sign in / Sign up

Export Citation Format

Share Document