Black Manakin (Xenopipo atronitens) as a keystone species for seed dispersal in a white-sand vegetation enclave in Southwest Amazonia

2022 ◽  
Author(s):  
Maíra Santos ◽  
Luana Alencar ◽  
Edson Guilherme
Oikos ◽  
2014 ◽  
Vol 124 (8) ◽  
pp. 1031-1039 ◽  
Author(s):  
Marco Aurelio Ribeiro Mello ◽  
Francisco Aparecido Rodrigues ◽  
Luciano da Fontoura Costa ◽  
W. Daniel Kissling ◽  
Çağan H. Şekercioğlu ◽  
...  

2018 ◽  
Vol 14 (8) ◽  
pp. 20180388 ◽  
Author(s):  
S. M. J. G. Steyaert ◽  
S. C. Frank ◽  
S. Puliti ◽  
R. Badia ◽  
M. P. Arnberg ◽  
...  

Cadaver decomposition islands around animal carcasses can facilitate establishment of various plant life. Facultative scavengers have great potential for endozoochory, and often aggregate around carcasses. Hence, they may disperse plant seeds that they ingest across the landscape towards cadaver decomposition islands. Here, we demonstrate this novel mechanism along a gradient of wild tundra reindeer carcasses. First, we show that the spatial distribution of scavenger faeces (birds and foxes) was concentrated around carcasses. Second, faeces of the predominant scavengers (corvids) commonly contained viable seeds of crowberry, a keystone species of the alpine tundra with predominantly vegetative reproduction. We suggest that cadaver decomposition islands function as endpoints for directed endozoochory by scavengers. Such a mechanism could be especially beneficial for species that rely on small-scale disturbances in soil and vegetation, such as several Nordic berry-producing species with cryptic generative reproduction.


Author(s):  
Gema Escribano-Avila ◽  
Carlos Lara-Romero ◽  
Ruben Heleno ◽  
Anna Traveset

Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 204
Author(s):  
Guillermo Blanco ◽  
Pedro Romero-Vidal ◽  
Martina Carrete ◽  
Daniel Chamorro ◽  
Carolina Bravo ◽  
...  

Understanding of ecosystem structure and functioning requires detailed knowledge about plant–animal interactions, especially when keystone species are involved. The recent consideration of parrots as legitimate seed dispersers has widened the range of mechanisms influencing the life cycle of many plant species. We examined the interactions between the burrowing parrot Cyanoliseus patagonus and two dominant algarrobo trees (Prosopis alba and Prosopis nigra) in the Monte Desert, Argentina. We recorded the abundance and foraging behaviour of parrots; quantified the handling, consumption, wasting, and dispersal of ripe and unripe pods; and tested the viability of soft and hard ripe seeds wasted and transported by parrots. We found a high abundance of burrowing parrots. They predated on soft seeds from unripe pods while exclusively feeding upon pulp wrapping hard seeds from ripe pods. Frequent pod wasting beneath the plant or transport at a distance invariably implied the dispersal of multiple seeds in each event. Moreover, soft seeds retained viability after desiccation outside the mother plant, suggesting effective seed dispersal after partial pod predation due to a predator satiation effect. In about half of the foraging flocks, at least one parrot departed in flight with pods in its beak, with 10–34% of the flock components moving pods at distances averaging 238 m (P. alba) and 418 m (P. nigra). A snapshot sampling of faeces from livestock and wild mammals suggested a low frequency of seed dispersal by endozoochory and secondary dispersal by ants and dung beetles. The nomadic movements and long flights of burrowing parrots between breeding and foraging sites can lead to the dispersal of huge amounts of seeds across large areas that are sequentially exploited. Further research should evaluate the role of the burrowing parrot as a functionally unique species in the structure of the Monte Desert woods and the genetic structure of algarrobo species.


2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Teguh Prayogo ◽  
Bayu Budiman

Ketapang area is one of lower part or southern sub-province of West Kalimanatan Province, which is located geographically between 108o40’ and 111o20’ in Longitude and between 0o20’ and 3o04’ in Latitude. This area has various of industrial mineral resources, for example quartz sand. Quartz sand or also calledwith white sand is the reasult of rock weathering that contents main mineral, such as quartz, and felsdpar. Then, the result of weathering is cleaned and transported by water or wind and deposited in the stream side, lake or sea. In this paper will bedescribed concerning to locations, characteristics, and usages of quratz sand in Ketapang area, West Kalimantan Province. Based on chemical or laboratory analysis and interpretation, the quartz sands can be used as glass industry, cement industry material, and moulding industry.


2008 ◽  
Vol 1 (1) ◽  
pp. 7-18
Author(s):  
Luciane Lopes de Souza

Biotic or abiotic processes of seed dispersal are important for the maintenance of the diversity, and for the natural regeneration in tropical forests. Ichthyochory is one of the fundamental mechanisms for seed dispersal in flooded environments, as the “igapó” forests. A study on the ichthyochory of the igapós was conducted at Amanã Sustainable Development Reserve, in the middle Solimões river, from June 2002 to September 2004. Monthly samples of frugivorous fish were taken, with the main fishing gears used locally. Guts of 1,688 fish caught were examined. The main species were Myloplus rubripinnis (29.21%), Hemiodus immaculatus (18.96%),Colossoma macropom um (16.23%) and Mylossoma duriventre (16.05%). The diet was made of vegetables (fruits, leave and flowers), and animals (arthropods). 53.02% of all fish caught ingested fruits. The total number of intact seeds in the stomachs and intestines were 8,069 and 5,763 respectively. About 61.9% of the Brycon melanopterus (matrinchão), 46.34% of the Brycon amazonicus (mamuri) and 30.22% of M . rubripinnis (parum ) analysed had intact seeds in their guts. Seeds of Nectandra amazonum and Genipa spruceana ingested proved to be more viable than those non-ingested by fish. The high rates of frugivory, the presence of intact seeds in the guts of fish and the greater viability of ingested seeds all suggest that these animals are important seed dispersors in the “igapó” forests of Amanã Reserve.


2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

2005 ◽  
Vol 166 (3) ◽  
pp. 368 ◽  
Author(s):  
Katul ◽  
Porporato ◽  
Nathan ◽  
Siqueira ◽  
Soons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document