Distributed Data Platform for Machine Learning Using the Fog Computing Model

2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Takeshi Tsuchiya ◽  
Ryuichi Mochizuki ◽  
Hiroo Hirose ◽  
Tetsuyasu Yamada ◽  
Keiichi Koyanagi ◽  
...  

Author(s):  
Juan C. Olivares-Rojas ◽  
Enrique Reyes-Archundia ◽  
Noel E. Rodriiguez-Maya ◽  
Jose A. Gutierrez-Gnecchi ◽  
Ismael Molina-Moreno ◽  
...  


Nature ◽  
2021 ◽  
Author(s):  
Stefanie Warnat-Herresthal ◽  
◽  
Hartmut Schultze ◽  
Krishnaprasad Lingadahalli Shastry ◽  
Sathyanarayanan Manamohan ◽  
...  

AbstractFast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.





2021 ◽  
Author(s):  
Michael Enbibel

This research is done for optimizing telemedicine framework by using fogging or fog computing for smart healthcare systems. Fog computing is used to solve the issues that arise on telemedicine framework of smart healthcare system like Infrastructural, Implementation, Acceptance, Data Management, Security, Bottleneck system organization, and Network latency Issues. we mainly used Distributed Data Flow (DDF) method using fog computing in order to fully solve the listed issues.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yao Huimin

With the development of cloud computing and distributed cluster technology, the concept of big data has been expanded and extended in terms of capacity and value, and machine learning technology has also received unprecedented attention in recent years. Traditional machine learning algorithms cannot solve the problem of effective parallelization, so a parallelization support vector machine based on Spark big data platform is proposed. Firstly, the big data platform is designed with Lambda architecture, which is divided into three layers: Batch Layer, Serving Layer, and Speed Layer. Secondly, in order to improve the training efficiency of support vector machines on large-scale data, when merging two support vector machines, the “special points” other than support vectors are considered, that is, the points where the nonsupport vectors in one subset violate the training results of the other subset, and a cross-validation merging algorithm is proposed. Then, a parallelized support vector machine based on cross-validation is proposed, and the parallelization process of the support vector machine is realized on the Spark platform. Finally, experiments on different datasets verify the effectiveness and stability of the proposed method. Experimental results show that the proposed parallelized support vector machine has outstanding performance in speed-up ratio, training time, and prediction accuracy.





2021 ◽  
Vol 17 (4) ◽  
pp. 293
Author(s):  
Javad Rezazadeh ◽  
Omid Ameri Sianaki ◽  
Mitra Mousavi


Sign in / Sign up

Export Citation Format

Share Document