Short-circuit protection method for medium-voltage SiC MOSFET based on gate–source voltage detection

2020 ◽  
Vol 20 (4) ◽  
pp. 1066-1075
Author(s):  
Zhankuo Wang ◽  
Chaonan Tong ◽  
Weichao Huang
2013 ◽  
Vol 448-453 ◽  
pp. 1732-1737
Author(s):  
Liu Bin ◽  
Hong Wei Cui ◽  
Li Xu ◽  
Kun Wang ◽  
Zhu Zhan ◽  
...  

This paper analyses the characteristics of large-scale offshore wind farm collection network and the impact of the medium voltage collection system optimization,while from the electrical technology point,it proposes the short circuit current of the collection network computational model and algorithms,based on the principle of equivalent circuit.Taking a wind power coolection system planned for a certain offshore wind farm planning for example, the validity of the model and algorithm is verified.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4186
Author(s):  
Saddam Shueai Alnamer ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Nadia M. L. Tan

This research proposes a four-level T-type inverter that is suitable for low-power applications. The presented topology outranks other types of inverters in terms of a smaller number of semiconductor devices, absence of passive components such as clamping diodes and flying capacitors, low switching and conduction losses, and high efficiency. The proposed topology is free from voltage deviation and unbalanced voltage occurrences that are present in other multilevel converters having clamping diodes or flying capacitors. The proposed inverter can extend to N levels using unequal dc-link voltage sources for medium-voltage application. The inverter employs the simple fundamental frequency staircase modulation technique. Moreover, this paper presents a current commutation strategy to prevent the occurrences of short circuit and minimizing the number of required switching devices and switching transitions, resulting in improving the efficiency of the inverter. This paper also analyses the theoretical converter losses showing lower switching and conduction losses when compared to existing four-level inverters. The experimental validation of the proposed inverter shows its operating feasibility and a low output voltage THD.


2015 ◽  
Vol 4 (4) ◽  
pp. 360-369 ◽  
Author(s):  
Takeshi Horiguchi ◽  
Shin-ichi Kinouchi ◽  
Yasushi Nakayama ◽  
Takeshi Oi ◽  
Hiroaki Urushibata ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 19-22
Author(s):  
S. Giere ◽  
T. Heinz ◽  
A. Lawall ◽  
C. Stiehler ◽  
E. D. Taylor ◽  
...  

During the development of a commercial vacuum interrupter for application in HV (high voltage) switchgear at a rated voltage of 145kV, we investigated the behavior of vacuum arcs controlled by axial magnetic fields (AMF). AMF arc control is already extensively used in medium voltage (1-52kV) applications, the key difference is the 2-3 times larger contact gap and the corresponding reduction of the AMF strength for HV applications. We conducted several stress tests with short circuit currents up to 40kA, thus not only testing the interrupting capability, but also the electrical endurance of such a contact system. We also investigated the dielectric behavior of the vacuum interrupter by testing the capacitive switching duty. Overall, the contacts were used in about 40 operations at high currents. Despite this large number of operations, they showed a minimal amount of contact erosion and damage and demonstrated behavior very similar to the extensive experience with MV vacuum interrupters. In line with simulation results, we conclude that even at high contact gaps and currents, a diffuse vacuum arc was maintained which distributed the arc energy evenly over the contacts.


2016 ◽  
Vol 65 (2) ◽  
pp. 235-248
Author(s):  
J. Anitha Roseline ◽  
M. Senthil Kumaran ◽  
V. Rajini

Abstract Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.


Author(s):  
Dragan Stevanovic

In this paper, Weibull and Poisson distribution calculation are carried out with new data to conclude a conclusion are they suitable for circuit breakers remaining useful life assessment (RUL). Old data are covering a 10 years period consisting of measured voltage drop on CB contacts and number of tripped short circuit faults. In this paper, new data, from the last 3 years, would be used to make a comparison with old data and make conclusions have been probability distributions correctly chosen.


Sign in / Sign up

Export Citation Format

Share Document