scholarly journals Microbial enhancement of plant nutrient acquisition

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Sunil K. Singh ◽  
Xiaoxuan Wu ◽  
Chuyang Shao ◽  
Huiming Zhang

AbstractNutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant’s initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.

2012 ◽  
Vol 9 (5) ◽  
pp. 1873-1884 ◽  
Author(s):  
G. M. Santos ◽  
A. Alexandre ◽  
J. R. Southon ◽  
K. K. Treseder ◽  
R. Corbineau ◽  
...  

Abstract. Plants absorb and transport silicon (Si) from soil, and precipitation of Si within the living plants results in micrometric amorphous biosilica particles known as phytoliths. During phytolith formation, a small amount of carbon (<2%) can become occluded in the silica structure (phytC) and therefore protected from degradation by the environment after plant tissue decomposition. Since the major C source within plants is from atmospheric carbon dioxide (CO2) via photosynthesis, the current understanding is that the radiocarbon (14C) content of phytC should reflect the 14C content of atmospheric CO2 at the time the plant is growing. This assumption was recently challenged by 14C data from phytoliths extracted from living grasses that yielded ages of several thousand years (2–8 kyr BP; in radiocarbon years "Before Present" (BP), "Present" being defined as 1950). Because plants can take up small amounts of C of varying ages from soils (e.g., during nutrient acquisition), we hypothesized that this transported C within the plant tissue could be attached to or even embedded in phytoliths. In this work, we explore this hypothesis by reviewing previously published data on biosilica mineralization and plant nutrient acquisition as well as by evaluating the efficiency of phytolith extraction protocols from scanning electron microscope (SEM) images and energy dispersive spectrometer (EDS) analyses from harvested grasses phytolith concentrates. We show that current extraction protocols are inefficient since they do not entirely remove recalcitrant forms of C from plant tissue. Consequently, material previously measured as "phytC" may contain at least some fraction of soil-derived C (likely radiocarbon-old) taken up by roots. We also suggest a novel interpretation for at least some of the phytC – which enters via the root pathway during nutrient acquisition – that may help to explain the old ages previously obtained from phytolith concentrates.


2008 ◽  
Vol 23 (2) ◽  
pp. 95-103 ◽  
Author(s):  
H LAMBERS ◽  
J RAVEN ◽  
G SHAVER ◽  
S SMITH

Nature Plants ◽  
2015 ◽  
Vol 1 (5) ◽  
Author(s):  
Graham Zemunik ◽  
Benjamin L. Turner ◽  
Hans Lambers ◽  
Etienne Laliberté

2021 ◽  
Vol 45 (7) ◽  
pp. 714-727
Author(s):  
Xiao-Long LI ◽  
Jun ZHOU ◽  
Fei PENG ◽  
Hong-Tao ZHONG ◽  
LAMBERS Hans ◽  
...  

2008 ◽  
Vol 6 (2) ◽  
pp. 49-60
Author(s):  
Igor A Tikhonovich ◽  
Nikolay A Provorov

The molecular mechanism of the agronomically important nutritional and defensive plantmicrobe symbioses are reviewed. These symbioses are based on the signaling interactions which result in the development of novel tissue/cellular structures and of extended metabolic capacities in the partners which improve greatly the adaptive potential of plants due to an increased tolerance to biotic or abiotic stresses. The molecular, genetic and ecological knowledge on plant-microbe interactions provide a strategy for a sustainable crop production based on substituting the agrochemicals (mineral fertilizers, pesticides) by the microbial inoculants. An improvement of plantmicrobe symbioses should involve the coordinated partners' modifications resulted in complementary combinations of their genotypes. The research presented in this paper is supported by grants from Russian Foundation of Basic Research (04-04-48457, 06-04-48800, 06-04-89000NWO); NWO Centre of Excellence: 047. 018. 001.


Sign in / Sign up

Export Citation Format

Share Document