scholarly journals Possible source of ancient carbon in phytolith concentrates from harvested grasses

2012 ◽  
Vol 9 (5) ◽  
pp. 1873-1884 ◽  
Author(s):  
G. M. Santos ◽  
A. Alexandre ◽  
J. R. Southon ◽  
K. K. Treseder ◽  
R. Corbineau ◽  
...  

Abstract. Plants absorb and transport silicon (Si) from soil, and precipitation of Si within the living plants results in micrometric amorphous biosilica particles known as phytoliths. During phytolith formation, a small amount of carbon (<2%) can become occluded in the silica structure (phytC) and therefore protected from degradation by the environment after plant tissue decomposition. Since the major C source within plants is from atmospheric carbon dioxide (CO2) via photosynthesis, the current understanding is that the radiocarbon (14C) content of phytC should reflect the 14C content of atmospheric CO2 at the time the plant is growing. This assumption was recently challenged by 14C data from phytoliths extracted from living grasses that yielded ages of several thousand years (2–8 kyr BP; in radiocarbon years "Before Present" (BP), "Present" being defined as 1950). Because plants can take up small amounts of C of varying ages from soils (e.g., during nutrient acquisition), we hypothesized that this transported C within the plant tissue could be attached to or even embedded in phytoliths. In this work, we explore this hypothesis by reviewing previously published data on biosilica mineralization and plant nutrient acquisition as well as by evaluating the efficiency of phytolith extraction protocols from scanning electron microscope (SEM) images and energy dispersive spectrometer (EDS) analyses from harvested grasses phytolith concentrates. We show that current extraction protocols are inefficient since they do not entirely remove recalcitrant forms of C from plant tissue. Consequently, material previously measured as "phytC" may contain at least some fraction of soil-derived C (likely radiocarbon-old) taken up by roots. We also suggest a novel interpretation for at least some of the phytC – which enters via the root pathway during nutrient acquisition – that may help to explain the old ages previously obtained from phytolith concentrates.

2012 ◽  
Vol 9 (1) ◽  
pp. 329-356 ◽  
Author(s):  
G. M. Santos ◽  
A. Alexandre ◽  
J. R. Southon ◽  
K. K. Treseder ◽  
R. Corbineau ◽  
...  

Abstract. Plants absorb and transport silicon (Si) from soil, and precipitation of Si within the living plants results in micrometric amorphous biosilica particles known as phytoliths. During phytolith formation, a small amount of carbon (< 2 %) can become occluded in the silica structure (phytC) and therefore protected from degradation by the environment after plant tissue decomposition. Since the major C source within plants is from atmospheric carbon dioxide (CO2) via photosynthesis, the current understanding is that the radiocarbon (14C) content of phytC should reflect the 14C content of atmospheric CO2 at the time the plant is growing. This assumption was recently challenged by 14C data from phytoliths extracted from living grasses that yielded ages of several thousand years (2–8 kyr BP; in radiocarbon years "Before Present" (BP), "Present" being defined as 1950). Because plants can take up small amounts of C of varying ages from soils (e.g. during nutrient acquisition), we hypothesized that this transported C within the plant tissue could be attached to or even embedded in phytoliths. In this work, we explore this hypothesis by reviewing previously published data on biosilica mineralization and plant nutrient acquisition as well as by evaluating the efficiency of phytolith extraction protocols from Scanning Electron Microscope (SEM) images and Energy Dispersive Spectrometer (EDS) analyses from harvested grasses phytolith concentrates. We show that current extraction protocols are inefficient since they do not entirely remove recalcitrant forms of C from plant tissue. Consequently, material previously measured as "phytC" may contain at least some fraction of soil-derived C (likely radiocarbon-old) taken up by roots. We also suggest a novel interpretation for at least some of the phytC – enters via the root pathway during nutrient acquisition – that may help to explain the old ages previously obtained from phytolith concentrates.


Author(s):  
Mahesh Chandramouli

Magnetization reversal in sintered Fe-Nd-B, a complex, multiphase material, occurs by nucleation and growth of reverse domains making the isolation of the ferromagnetic Fe14Nd2B grains by other nonmagnetic phases crucial. The magnets used in this study were slightly rich in Nd (in comparison to Fe14Nd2B) to promote the formation of Nd-oxides at multigrain junctions and incorporated Dy80Al20 as a liquid phase sintering addition. Dy has been shown to increase the domain wall energy thus making nucleation more difficult while Al is thought to improve the wettability of the Nd-oxide phases.Bulk polished samples were examined in a JEOL 35CF scanning electron microscope (SEM) operated at 30keV equipped with a Be window energy dispersive spectrometer (EDS) detector in order to determine the phase distribution.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


2014 ◽  
Vol 490-491 ◽  
pp. 8-13
Author(s):  
Jing Yang ◽  
Zhi Yu Yan ◽  
Bing Sun ◽  
Qiao Min Wang

A preparation of nanometer silver sol by micro arc discharge has been study here through the reduction of Ag3PO4. Sodium citrate and polyvinylpyrrolidone were added respectively into the electrolyte as stabilizer. The results show that, the Ag3PO4 concentration, stabilizer type and concentration have great impacts on the formation of the nanometer silver sol. By means of UV-VIS extinction spectrophotometer, scanning electron microscope and energy dispersive spectrometer, it is found that the solid powder extracted from the electrolyte solution after discharge is the aggregation of the silver formed in the solution and their original size maybe less than 20nm. Nanometer silver with smaller size and narrower size distribution can be obtained with sodium citrate as stabilizer than with polyvinylpyrrolidone. But the latter has higher conversion rate. From this experiment, we found that micro arc discharge can be a rapid, stable preparation method of nanometer silver sol.


2014 ◽  
Vol 887-888 ◽  
pp. 458-461
Author(s):  
Chang Qing Li ◽  
Kun Wang ◽  
Pei Jia Liu ◽  
Qi Ming

Porous silicon (PSi) was fabricated by using electrochemical anodic etching method. Then acid treatment and cathode reduction treatment were employed to improve the luminescence properties and stability of PSi material. Photoluminescence (PL) measurements and scanning electron microscope (SEM) were used to observe the luminescence properties and microstructure of samples, respectively. The results of PL measurements showed that the PL intensity and the stability of luminescence of samples after cathodic reduction and acid treatment were significantly improved. The SEM images showed that the porosity of PSi may be increased through the cathodic reduction treated.


2011 ◽  
Vol 391-392 ◽  
pp. 973-977
Author(s):  
Jing Mao ◽  
Ke Hua Dai ◽  
Yu Chun Zhai

Li(Ni1/3Co1/3Mn1/3)O2material with high rate capability was synthesized by a novel gel-combustion method using polyvinylpyrrolidone as a polymer chelating agent and a fuel. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were used to study the structure, morphology and element distribution of the Li(Ni1/3Co1/3Mn1/3)O2material. XRD analysis showed that all samples were α-NaFeO2structure and Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest c/a of 4.977 indicating the highest layered-ness. EDS scan demonstrated that the precursor was homogeneous. SEM images indicated all samples were well crystallized. Charge and discharge tests showed all samples had good rate capability. Among them, Li(Ni1/3Co1/3Mn1/3)O2prepared at 900 °C had the highest capacity and the best rate capability. It delivered 162.1 mAh•g−1at 0.25 C between 2.5 and 4.3 V and the capacity retention was about 81% compared to that of 0.25C rate.


2012 ◽  
Vol 501 ◽  
pp. 316-320
Author(s):  
Jian Zhang Guo ◽  
Bin Xu

In order to improve the surface property of the steel tire mold, carbon steels were processed by electroless Ni-P and Ni-P-PTFE under contrast experiment. The coatings were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). The wear resistance and corrosion resistance of the coatings were explored by tribometer, salt spray cabinet and advanced electrochemical system. The experimental results showed that the Ni-P coating was amorphous structure, and the Ni-P-PTFE coating was micro-pore structure; The wear resistance of Ni-P-PTFE coating was superior to Ni-P coating; In view of the micro-pore structure, the corrosion resistance of Ni-P-PTFE coating was worse than Ni-P coating, but they were all superior to carbon steels, and the service life of the steel tire mold were improved.


2016 ◽  
Author(s):  
C. Frankenberg ◽  
S. S. Kulawik ◽  
S. Wofsy ◽  
F. Chevallier ◽  
B. Daube ◽  
...  

Abstract. In recent years, space-borne observations of atmospheric carbon-dioxide (CO2) have become increasingly used in global carbon-cycle studies. In order to obtain added value from space-borne measurements, they have to suffice stringent accuracy and precision requirements, with the latter being less crucial as it can be reduced by just enhanced sample size. Validation of CO2 column averaged dry air mole fractions (XCO2) heavily relies on measurements of the Total Carbon Column Observing Network TCCON. Owing to the sparseness of the network and the requirements imposed on space-based measurements, independent additional validation is highly valuable. Here, we use observations from the HIAPER Pole-to-Pole Observations (HIPPO) flights from January 2009 through September 2011 to validate CO2 measurements from satellites (GOSAT, TES, AIRS) and atmospheric inversion models (CarbonTracker CT2013B, MACC v13r1). We find that the atmospheric models capture the XCO2 variability observed in HIPPO flights very well, with correlation coefficients (r2) of 0.93 and 0.95 for CT2013B and MACC, respectively. Some larger discrepancies can be observed in profile comparisons at higher latitudes, esp. at 300 hPa during the peaks of either carbon uptake or release. These deviations can be up to 4 ppm and hint at misrepresentation of vertical transport. Comparisons with the GOSAT satellite are of comparable quality, with an r2 of 0.85, a mean bias μ of −0.06 ppm and a standard deviation σ of 0.45 ppm. TES exhibits an r2 of 0.75, μ of 0.34 ppm and σ of 1.13 ppm. For AIRS, we find an r2 of 0.37, μ of 1.11 ppm and σ of 1.46 ppm, with latitude-dependent biases. For these comparisons at least 6, 20 and 50 atmospheric soundings have been averaged for GOSAT, TES and AIRS, respectively. Overall, we find that GOSAT soundings over the remote pacific ocean mostly meet the stringent accuracy requirements of about 0.5 ppm for space-based CO2 observations.


Sign in / Sign up

Export Citation Format

Share Document