scholarly journals MOLECULAR STRATEGIES AND AGRONOMIC IMPACTS OF PLANT-MICROBE SYMBIOSES

2008 ◽  
Vol 6 (2) ◽  
pp. 49-60
Author(s):  
Igor A Tikhonovich ◽  
Nikolay A Provorov

The molecular mechanism of the agronomically important nutritional and defensive plantmicrobe symbioses are reviewed. These symbioses are based on the signaling interactions which result in the development of novel tissue/cellular structures and of extended metabolic capacities in the partners which improve greatly the adaptive potential of plants due to an increased tolerance to biotic or abiotic stresses. The molecular, genetic and ecological knowledge on plant-microbe interactions provide a strategy for a sustainable crop production based on substituting the agrochemicals (mineral fertilizers, pesticides) by the microbial inoculants. An improvement of plantmicrobe symbioses should involve the coordinated partners' modifications resulted in complementary combinations of their genotypes. The research presented in this paper is supported by grants from Russian Foundation of Basic Research (04-04-48457, 06-04-48800, 06-04-89000NWO); NWO Centre of Excellence: 047. 018. 001.

Author(s):  
Charles H. Klein

Since Francis Crick and James D. Watson’s discovery of DNA in 1953, researchers, policymakers, and the general public have sought to understand the ways in which genetics shapes human lives. A milestone in these efforts was the completion of the Human Genome Project’s (HGP) sequencing of Homo sapiens’ nearly three million base pairs in 2003. Yet, despite the excitement surrounding the HGP and the discovery of the structural genetic underpinnings of several debilitating diseases, the vast majority of human health outcomes have not been linked to a single gene. Moreover, even when genes have been associated with particular diseases (e.g., breast and colon cancer), it is not well understood why certain genetically predisposed individuals become ill and others do not. Nor has the HGP’s map provided sufficient information to understand the actual functioning of the human genetic code, including the role of noncoding DNA (“junk DNA”) in regulating molecular genetic processes. In response, a growing number of scientists have shifted their attention from structural genetics to epigenetics, the study of how genes express themselves in particular situations and environments. Anthropologists play roles in these applications of epigenetics to real-world settings. Their new theoretical frameworks unsettle the nature-versus-nurture binary and support biocultural anthropological research demonstrating how race becomes biology and embodies social inequalities and health disparities across generations. Ethnographically grounded case studies further highlight the diverse epigenetic logics held by healthcare providers, researchers, and patient communities and how these translations of scientific knowledge shape medical practice and basic research. The growing field of environmental epigenetics also offers a wide range of options for students and practitioners interested in applying the anthropological toolkit in epigenetics-related work.


2020 ◽  
Vol 10 (4) ◽  
pp. 580-593
Author(s):  
M A. Bryzgalina ◽  

The demand for organic food is a prerequisite for the formation and development of organic agriculture, and the task of promoting it on domestic and foreign markets is among the priority ones. A serious problem in the sale of this category of goods to the domestic food markets of the country is the distrust of potential consumers. It is possible to solve this problem through certification and the use of a well-known brand. Certification of manufacturers of environmentally friendly products is a rather complicated and expensive procedure, therefore it is not available for most agricultural producers in the Saratov region. However, basing on the fact that today the task of developing the organic agriculture industry is set at the level of the government of the country, it is possible to solve this problem with the support of the state. The article examines the enterprises of the Saratov region of various legal forms, which do not use fertilizers and chemical means of crop protection in the production of crop production. Using the example of agricultural organizations and farms in the region, a mechanism for subsidizing certification of the most promising producers of organic wheat (winter and spring) is proposed, which includes the allocation of targeted subsidies for its implementation. As a criterion for the selection of applicants for this type of state support, as well as the distribution of budgetary resources between them, it is proposed to use the average indicator (potential) of the annual volume of organic production in the work. As a result, direct participants in certification subsidies were selected from the compiled sample of the studied enterprises that do not use chemical plant protection products and mineral fertilizers and the total annual volume of their marketable wheat was determined. The author determined the maximum cost of quality confirmation procedures for one enterprise, taking into account the increasing coefficients per one day of inspection, and also established the largest amount of budgetary resources that may be spent on the implementation of the proposed measure. In order to evaluate the effectiveness of the proposed certification subsidy mechanism, the author developed formulas for determining the selling price of products in the promising organic segment, taking into account its increase by the level of premium premiums.


2020 ◽  
pp. 12-19
Author(s):  
Yu. V. Chesnokov

Modern crop cultivation technologies have reached the limits of “saturation” both in the ecological (environmental pollution, suppression of the mechanisms of its self-regulation), energy (exponential growth of irreplaceable energy costs for each additional unit of production), and in production. In this regard, environmental factors (air drought, frosts, active temperatures, etc.), which cannot be optimized, are becoming increasingly important in ensuring a steady increase in the yield of cultivated plant forms. In recent decades, more and more attention has been paid to technogenic and biological systems of agriculture, based on the ecologization and biologization of the intensification processes of adaptive crop production. Such approaches are the precision agriculture system (PA) and QTL analysis. Using these approaches allows not only to ensure a steady increase in productivity due to the combined use of the advantages of precision farming and molecular genetic assessment, including the creation of new forms and varieties that are responsive to РА agricultural practices, but also to level the negative impact of abiotic and biotic environmental factors that limit the size and quality of the crop as well as plant productivity. It is shown that the strategy of adaptive intensification of crop production through the use of the TK system and QTL analysis approaches is not alternative to existing farming systems, however, it focuses modern agriculture on the growth of knowledge-intensive agricultural production as a whole. An analysis of the causes under consideration, the current unfavorable trends in modern crop production and agriculture, clearly shows their scale and long-term nature, and therefore the inevitability of the search for new priorities for intensification of crop production and agriculture, providing a qualitatively new stage of their development in the interests of man.


Author(s):  
Ivan Voiku

The right way out of the crisis of the agro-based industries is the maximum use of the opportunities of scientific and technological progress and the orientation of the real economy to innovative development. One of the promising technologies of crop production is an innovative technology in potato growing, which provides for the co-culturing of potatoes with honey crops. Phacelia tanacetifolia (PhaceliatanacetifoliaBenth) is selected as honey crop, which is a valuable green manure. It allows to reduce the need for organic and mineral fertilizers, increases the ecological cleanness of products, favors the growth of potato yield, provides the additional honey yield. Phacelia significantly improves the soil structure, displacing a significant part of weeds, providing natural loosening of the soil, protection from drying out, from pests and parasites. The co-culturing of potatoes with phacelia protects the environment from the use of dangerous plant protection products. If the economic effect is defined as the difference between the profits of innovative and traditional technologies, then, according to preliminary calculations, the level of profitability of innovative technology in potato growing is 1.9 times higher, and the profit from 1 ha is 1.6 times higher compared with the traditional technology. Large-scale development of the proposed technology is hampered by the lack of potato planters and seed planters, which provide planting of potatoes and sowing seeds of honey crops simultaneously, in the Russian market and the markets of the European Union. An innovative technology - mounted seeder for potato planters was developed by the staff members of the Pskov State University. The article describes the main agro-technological requirements to this device. A general model and a kinematic scheme were developed to visualize the combination of the working elements of the potato planter and the mounted seeder. The developed model falls into the type of seed planters, which is designed to sowing in drills the seeds of honey crops (phacelia) in the furrow between potatoes at the time of the forthcoming closing of this furrow by soil, and can be used in agricultural engineering. Potential consumers of the proposed innovative technology in potato growing and the developed mounted seeder are farm enterprises and agricultural production cooperatives, which have small plots of land, use crop rotation systems in potato growing, and work for reducing costs and increasing the yield of potato cultivation.


Author(s):  
Sanjeet Kumar ◽  
R. K. Sahu ◽  
R. K. Thakur ◽  
Bablu Yaduwanshi ◽  
N. G. Mitra

The present study was carried out during kharif season 2019-20 at the Research Farm, Department of Soil Science & Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh (INDIA), to assess the effect of microbial inoculants on plant attributes and nutrients uptake by soybean in Vertisols. The experiment was laid out under randomized block design (RBD) with three replications. The 15 treatments comprised of different beneficial microbial consortia in possible combinations applied as seed treatments. The crop was supplemented with recommended dose of fertilizers 20 N : 80 P2O5 : 20 K2O kg ha-1. Besides these, two control plots were maintained as fertilized un-inoculated control (FUI) and unfertilized un-inoculated control (UFUI). The findings revealed that the significant improvement were noticed by the application of consortia NPK+EM+PGPR in plant growth attributes of nodulation at 25, 45 & 65 DAS (71, 70 & 59% respectively), over control (9.5, 33.4 & 34.7 nodule plant-1) and its biomass, (62, 69 & 74% respectively),over the control  (0.58, 1.16 & 0.99 g plant-1),  plant height at 25, 45 & 65DAS were increased 61, 40, 41% respectively, over the control (16.20, 34.90 and 44.30 cm) and plant biomass, (48, 62 & 53%), over the control 1.67, 4.73 and 6.1 g plant-1. Similarly, nutrient uptake (seed & stover) were also increased at 25, 45 and 65 stages of crop growth, with 36.6, 34.8 & 51.3% in seed and 66.7, 98.2 & 67.2% in straw respectively over the control (98.5, 63.8, 5.2, and 7.4, 24.9 and 44.4 kg ha-1 respectively). Thus, it may be concluded that the consortium of NPK + EM + PGPR was superior for sustainable crop production and soil health.


Author(s):  
David Johnston-Monje ◽  
Ashly Lisset Arévalo ◽  
Ana Cristina Bolaños

2002 ◽  
Vol 92 (12) ◽  
pp. 1356-1362 ◽  
Author(s):  
F. N. Martin ◽  
C. T. Bull

Soil fumigation with methyl bromide plus chloropicrin is used as a preplant treatment to control a broad range of pathogens in high-value annual crop production systems. In California, fumigation is used on approximately 10,125 ha of strawberry production to control pathogens ranging from Verticillium dahliae to root pruning pathogens such as Pythium, Rhizoctonia, or Cylindrocarpon spp. In addition to pathogen control, fumigation also causes an enhanced growth response of the plant and reduces weed pressure. The development of successful, long-term cost effective biocontrol strategies most likely will require the development of an integrated systems approach that incorporates diverse aspects of the crop production system. Although application of single microbial inoculants may provide some level of control for specific production problems, it will be a challenge to provide the broad spectrum of activity needed in production fields.


2002 ◽  
Vol 53 (8) ◽  
pp. 865 ◽  
Author(s):  
S. S. Quisenberry ◽  
S. L. Clement

Insect and mite damage accounts for a significant level (30−70%) of total crop production losses. Conservation and use of plant genetic resources are required to endow crops with pest resistance, as well as to enhance crop yields and nutritional qualities. Advancements in molecular genetic technologies have the potential to facilitate the introgression of insect resistance genes from conserved and unadapted germplasm into cultivated crops. Long−term food security and the sustainability of agricultural productivity worldwide can be enhanced with the conservation and use of global plant genetic resources.


2020 ◽  
Author(s):  
Viktória Labancz ◽  
András Sebők ◽  
Imre Czinkota ◽  
Tamás Szegi ◽  
András Makó

<p>Today, due to climate change, soil degradation processes related to extreme water supply situations (flood, inland water or drought) are occurring more and more frequently. Soil structure is one of the most important soil characteristics influencing many transport of materials (transport, storage of heat, gas, water and nutrients).Furthermore, it defines and ultimately determines the significant physical, chemical and biological processes involved and also the most important factor in agricultural crop production. Permanent water cover has a significant effect on soil structure, but the dynamics of disaggregation and the role of the soil factors influencing it is not yet fully understood. Our basic research aim is to investigate the effect of permanent water cover on soil structure on representative Hungarian soil samples. In our experiment, we sought to find the answer to the question of how long-term water coverage causes changes and damage to the soil structure under laboratory conditions by artificial water cover. We measured aggregate stability with Mastersizer 3000 Hydro LV laser diffractometry device and some soil chemistry parameters with Agilent 4210 MP-AES at different water cover times (selected in the literature). Based on experiences the effect of persistent water cover from the soil structure side can be most noticeable in the changes of macro- and microaggregate stability, as well as in the change of certain chemical parameters (e.g. calcium and iron content), thus, the aim of our research was to investigate these characteristics also. After compiling our results in a database, we evaluated and deduced statistical data on the long-term degradation effects of water cover. We also made an attempt to describe its disaggregation dynamics for different Hungarian soil types. Based on the results, we have selected the most sensitive soils for permanent water cover, which are also expected to be sensitive to extreme water management related to climate change.</p>


2017 ◽  
Vol 63 (No. 3) ◽  
pp. 105-110 ◽  
Author(s):  
Vitale Luca ◽  
Polimeno Franca ◽  
Ottaiano Lucia ◽  
Maglione Giuseppe ◽  
Tedeschi Anna ◽  
...  

Improvements in crop management for a more sustainable agriculture are fundamental to reduce environmental impacts of cropland and to mitigate effects on global climate change. In this study three fertilization types – ammonium nitrate (control); mineral fertilizer added with a nitrification inhibitor (3,4-dimethylpyrazole phosphate (DMPP)), and an organo-mineral fertilizer (OM) – were tested on a tomato crop in order to evaluate effects both on crop production and soil N<sub>2</sub>O emissions. Plants grown under OM fertilization had a greater relative growth rate compared to mineral fertilization, due to a higher net assimilation rate, which was related to a greater light interception rather than to a higher photosynthetic efficiency. OM fertilization determined the highest fruit production and lower soil N<sub>2</sub>O fluxes compared to NH<sub>4</sub>NO<sub>3</sub>, although the lowest soil N<sub>2</sub>O fluxes were found in response to mineral fertilizer added with a nitrification inhibitor. It can be concluded that organo-mineral fertilizer is a better nutrient source compared to mineral fertilizers able to improve crop yield and to mitigate soil N<sub>2</sub>O emission.  


Sign in / Sign up

Export Citation Format

Share Document