The stability of Drosophila melanogaster courtship across matings

1979 ◽  
Vol 27 ◽  
pp. 1041-1047 ◽  
Author(s):  
S. Crossley ◽  
J. McDonald
Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


Genetics ◽  
1986 ◽  
Vol 113 (2) ◽  
pp. 305-319
Author(s):  
Craig H Marcus ◽  
Anne E Zitron ◽  
David A Wright ◽  
R Scott Hawley

ABSTRACT rDNA magnification in Drosophila melanogaster is defined experimentally as the ability of bb/Ybb  - males to produce exceptional progeny that are wild type with respect to rDNA associated phenotypes. Here, we show that some of these bobbed-plus progeny result not from genetic reversion at the bb locus but rather from variants at two or more autosomal loci that ameliorate the bobbed phenotype of rDNA deficient males in Drosophila. In doing so we resolve several aspects of a long-standing paradox concerning the phenomenon of rDNA magnification. This problem arose from the use of two genetic assays, which were presumed to be identical, but paradoxically, produced conflicting data on both the kinetics of reversion and the stability of magnified bb  + chromosomes. We resolve this problem by demonstrating that in one assay bobbed-plus progeny arise primarily by genetic reversion at the bobbed locus, whereas in the other assay bobbed-plus progeny arise both by reversion and by an epistatic effect of autosomal modifiers on the bobbed phenotype. We further show that such modifiers can facilitate the appearance of phenotypically bobbed-plus progeny even under conditions where genetic reversion is blocked by magnification defective mutants. Finally, we present a speculative model relating the action of these modifiers to the large increases in rDNA content observed in males undergoing magnification.


2020 ◽  
Vol 10 (11) ◽  
pp. 4271-4285 ◽  
Author(s):  
Danny E. Miller ◽  
Lily Kahsai ◽  
Kasun Buddika ◽  
Michael J. Dixon ◽  
Bernard Y. Kim ◽  
...  

Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain deleterious mutations in stable populations, preserve sets of linked genetic elements and construct complex experimental stocks. Here, we assess the phenotypes associated with breakpoint-induced mutations on commonly used third chromosome balancers and show remarkably few deleterious effects. We demonstrate that a breakpoint in p53 causes loss of radiation-induced apoptosis and a breakpoint in Fucosyltransferase A causes loss of fucosylation in nervous and intestinal tissue—the latter study providing new markers for intestinal cell identity and challenging previous conclusions about the regulation of fucosylation. We also describe thousands of potentially harmful mutations shared among X or third chromosome balancers, or unique to specific balancers, including an Ankyrin 2 mutation present on most TM3 balancers, and reiterate the risks of using balancers as experimental controls. We used long-read sequencing to confirm or refine the positions of two inversions with breakpoints lying in repetitive sequences and provide evidence that one of the inversions, In(2L)Cy, arose by ectopic recombination between foldback transposon insertions and the other, In(3R)C, cleanly separates subtelomeric and telomeric sequences and moves the subtelomeric sequences to an internal chromosome position. In addition, our characterization of In(3R)C shows that balancers may be polymorphic for terminal deletions. Finally, we present evidence that extremely distal mutations on balancers can add to the stability of stocks whose purpose is to maintain homologous chromosomes carrying mutations in distal genes. Overall, these studies add to our understanding of the structure, diversity and effectiveness of balancer chromosomes.


1981 ◽  
Vol 197 (1) ◽  
pp. 111-117 ◽  
Author(s):  
D R Thatcher ◽  
R Sheikh

The effect of temperature on four purified alleloenzymes of the alcohol dehydrogenase (Adhs, Adhf, AdhD and Adhn-5) of the fruitfly Drosophila melanogaster was investigated in detail. Initial-velocity studies showed that the naturally occurring Adhf and Adhs enzymes differed only in their temperature optima, and evidence of kinetic adaptation to high and low temperature was not apparent. All four alleloenzymes denatured irreversibly on heating purified enzyme solutions at pH 6.0. This technique revealed only small differences in thermostability between Adhf and Adhs, although the two mutant enzymes from AdhD and Adhn-5 were considerably more labile. Electrophoresis of the enzymes though a stable transverse temperature gradient proved to be a discriminating and reproducible technique. Enzymes of different net charge were compared on the same polyacrylamide gel. The Adhf enzyme was shown to be significantly less stable than the Adhs enzyme. Subunit interchange was observed at temperatures below the point at which the unfolding occurred. At pH 4.0, the Adhf/Adhs heterodimer was as stable as the Adhs homodimeric enzyme, and more stable than the Adhf homodimer. Adhn-5 and AdhD alleloenzymes were relatively thermolabile. The stability of the alleloenzymes towards urea denaturation was studied by urea-gradient electrophoresis. Only small differences in stability between the Adhf and Adhs enzymes were observed. The AdhD and Adhn-5 mutants were denatured at the same urea concentration, which was much lower than in the case of the wild-type enzymes. Except at pH 4.0, subunit dissociation could not be distinguished from the unfolding of the monomer.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1143-1158 ◽  
Author(s):  
B D H Latter

AbstractMultilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for ~200 generations at a harmonic mean population size of Nh ~65–70. With a simulated population size of N = 50, and a mean selective disadvantage of homozygotes at individual loci ~1–2% or less, it is demonstrated that the mean effective population size over a 200-generation period may be considerably greater than N, with a ratio matching the experimental estimate of Ne/Nh ~1.4. The buildup of associative overdominance at electrophoretic marker loci is largely responsible for the stability of gene frequencies and the observed reduction in the rate of inbreeding, with apparent selection coefficients in favor of the heterozygote at neutral marker loci increasing rapidly over the first N generations of inbreeding to values ~5–10%. The observed decline in fitness under competitive conditions in populations of size ~50 in D. melanogaster therefore primarily results from mutant alleles with mean effects on fitness as homozygotes of sm ≤ 0.02. Models with deleterious recessive mutants at the background loci require that the mean selection coefficient against heterozygotes is at most hsm ~0.002, with a minimum mutation rate for a single Drosophila autosome 100 cM in length estimated to be in the range 0.05–0.25, assuming an exponential distribution of s. A typical chromosome would be expected to carry at least 100–200 such mutant alleles contributing to the decline in competitive fitness with slow inbreeding.


Genetics ◽  
1972 ◽  
Vol 71 (3) ◽  
pp. 439-460
Author(s):  
Jørgen Bundgaard ◽  
Freddy Bugge Christiansen

Abstract The total dynamics of a fourth chromosome polymorphism in Drosophila melanogaster is studied in an experimental population in which it is possible to measure various selection components simultaneously in each generation. It is demonstrated that although zygotic selection operates in the system, the component of major importance for the dynamics is sexual selection, and it is this component that is responsible for the stability of the polymorphism. Fecundity selection is of very minor importance. Both zygotic and sexual selection components behave in a frequency-dependent way. The results are discussed in relation to genetic load and the detection of selection in natural and experimental populations.


2016 ◽  
Author(s):  
I.A. Kozeretska ◽  
V. Bondarenko ◽  
V.I. Shulga ◽  
S.V. Serga ◽  
A.I. Rozhok ◽  
...  

AbstractThe Drosophila melanogaster P transposable element provides one of the best cases of horizontal transfer of a mobile DNA sequence in eukaryotes. Invasion of natural populations by the P element has led to a syndrome of phenotypes known as “P-M hybrid dysgenesis” that emerges when strains differing in their P element composition mate and produce offspring. Despite extensive research on many aspects of P element biology, questions remain about the stability and genomic basis of variation in P-M dysgenesis phenotypes. Here we report the P-M status for a number of populations sampled recently from Ukraine that appear to be undergoing a shift in their P element composition. Gondal dysgenesis assays reveal that Ukrainian populations of D. melanogaster are currently dominated by the P’ cytotype, a cytotype that was previously thought to be rare in nature, suggesting that a new active form of the P element has recently spread in this region. We also compared gondal dysgenesis phenotypes and genomic P element predictions for isofemale strains obtained from three worldwide populations of D. melanogaster in order to guide further work on the molecular basis of differences in cytotype status across populations. We find that the number of euchromatic P elements per strain can vary significantly across populations but that total P element numbers are not strongly correlated with the degree of gondal dysgenesis. Our work shows that rapid changes in cytotype status can occur in natural populations of D. melanogaster, and informs future efforts to decode the genomic basis of geographic and temporal differences in P element induced phenotypes.


Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1085-1105 ◽  
Author(s):  
Rayla Greenberg Temin

Segregation Distorter (SD) is a naturally occurring male meiotic drive system in Drosophila melanogaster, characterized by almost exclusive transmission of the SD chromosome owing to dysfunction of sperm receiving the SD+ homolog. Previous studies identified at least three closely linked loci on chromosome 2 required for distortion: Sd, the primary distorting gene; E(SD) (Enhancer of SD), which increases the strength of distortion; and Rsp (Responder), the apparent target of Sd. Strength of distortion is also influenced by linked upward modifiers including M(SD) (Modifier of SD) and St(SD) (Stabilizer of SD), and by various unlinked suppressors. Although Sd is known to encode a mutant RanGAP protein, none of the modifiers have been molecularly identified. This work focuses on the genetic and cytological characterization of a strong X-linked suppressor, Su(SD), capable of restoring Mendelian transmission in SD/SD+ males. Sd and its cohort of positive modifiers appear to act semiquantitatively in opposition to Su(SD) with distortion strength depending primarily on the total number of distorting elements rather than which particular elements are present. Su(SD) can also suppress male sterility observed in certain SD genotypes. To facilitate its eventual molecular identification, Su(SD) was localized by deletion mapping to polytene region 13C7-13E4. These studies highlight the polygenic nature of distortion and its dependence on a constellation of positive and negative modifiers, provide insight into the stability of Mendelian transmission in natural populations even when a drive system arises, and pave the way for molecular characterization of Su(SD) whose identity should reveal new information about the mechanism of distortion.


Sign in / Sign up

Export Citation Format

Share Document