Modulation of the activity of rat liver acetylglutamate synthase by pH and arginine concentration

1985 ◽  
Vol 243 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Edwin S. Kamemoto ◽  
Daniel E. Atkinson
1985 ◽  
Vol 232 (2) ◽  
pp. 329-334 ◽  
Author(s):  
S Kawamoto ◽  
T Sonoda ◽  
A Ohtake ◽  
M Tatibana

N-Acetyl-L-glutamate synthetase (EC 2.3.1.1) catalyses the synthesis of N-acetyl-L-glutamate, an allosteric activator of carbamoyl-phosphate synthetase I in the liver of ureotelic animals, and the first enzyme is activated specifically by arginine. We have proposed that arginine can stimulate acetylglutamine synthetase in vivo and thereby increase the mitochondrial content of acetylglutamate. The effects of arginine on acetylglutamate synthesis in isolated mitochondria were investigated in detail in the present work. When rat liver mitochondria were isolated and incubated with [14C]glutamate and unlabelled acetate as substrates, acetyl[14C]glutamate synthesis in the mitochondria was more extensive in the presence than in the absence of L-arginine. There was no significant difference between the specific radioactivities of intramitochondrial [14C]glutamate in the presence and absence of arginine. When rat liver mitochondria were incubated with [14C]acetate and unlabelled glutamate as substrates, arginine also stimulated acetyl[14C]glutamate synthesis in the isolated mitochondria. L-Lysine or L-homoarginine, which does not activate acetylglutamate synthetase, had no effect on acetylglutamate synthesis, in the isolated mitochondria. The arginine concentration giving half-maximal synthesis of acetylglutamate in isolated mitochondria was about 50 microM, which is in the range of physiological concentrations of arginine in the liver. As we previously reported [Kawamoto, Ishida, Mori & Tatibana (1982) Eur. J. Biochem. 123, 637-641], the sensitivity of acetylglutamate synthetase to arginine activation undergoes marked changes after food ingestion. The extent of arginine activation of acetylglutamate synthesis in isolated mitochondria correlated well with the sensitivity of acetylglutamate synthetase extracted from the mitochondria to arginine activation. These data lend further support to the idea that arginine itself activates the mitochondrial synthesis of acetylglutamate.


2004 ◽  
Vol 186 (18) ◽  
pp. 6142-6149 ◽  
Author(s):  
M. Leonor Fernández-Murga ◽  
Fernando Gil-Ortiz ◽  
José L. Llácer ◽  
Vicente Rubio

ABSTRACT To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-l-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of ∼4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65°C the I0.50 observed at 37°C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75°C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37°C arginine also substantially decreased the V max of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed.


Author(s):  
W. A. Shannon ◽  
M. A. Matlib

Numerous studies have dealt with the cytochemical localization of cytochrome oxidase via cytochrome c. More recent studies have dealt with indicating initial foci of this reaction by altering incubation pH (1) or postosmication procedure (2,3). The following study is an attempt to locate such foci by altering membrane permeability. It is thought that such alterations within the limits of maintaining morphological integrity of the membranes will ease the entry of exogenous substrates resulting in a much quicker oxidation and subsequently a more precise definition of the oxidative reaction.The diaminobenzidine (DAB) method of Seligman et al. (4) was used. Minced pieces of rat liver were incubated for 1 hr following toluene treatment (5,6). Experimental variations consisted of incubating fixed or unfixed tissues treated with toluene and unfixed tissues treated with toluene and subsequently fixed.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
F. G. Zaki

Fetal and neonatal liver injury induced by agents circulating in maternal plasma, even though well recognized, its morphological manifestations are not yet established. As part of our studies of fetal and neonatal liver injury induced by maternal nutritional disorders, metabolic impairment and toxic agents, the effects of two anti-inflammatory steroids have been recently inves tigated.Triamcinolone and methyl prednisolone were injected each in a group of rats during pregnancy at a-dosage level of 2 mgm three times a week. Fetal liver was studied at 18 days of gestation. Litter size and weight markedly decreased than those of control rats. Stillbirths and resorption were of higher incidence in the triamcinolone group than in those given the prednisolone.


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


2001 ◽  
Vol 120 (5) ◽  
pp. A379-A379
Author(s):  
Y TAKAMATSU ◽  
K SHIMADA ◽  
K CHIJIWA ◽  
M TANAKA

Sign in / Sign up

Export Citation Format

Share Document