Relationship between alcohol preference and biogenic aldehyde metabolizing enzymes in rats

1977 ◽  
Vol 26 (9) ◽  
pp. 841-846 ◽  
Author(s):  
Denis Berger ◽  
Henry Weiner
1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S279-S294 ◽  
Author(s):  
Paul Robel

ABSTRACT Of the information available on steroid hormone metabolism in responsive tissues, only that relating hormone metabolism to physiological activity is reviewed, i. e. metabolite activity in isolated in vitro systems, binding of metabolites to target tissue receptors, specific steroid hormone metabolizing enzymes and relationship of hormone metabolism to target organ physiological state. Further, evidence is presented in the androgen field, demonstrating 5α-reduced metabolites, formed inside the target cells, as active compounds. This has led to a consideration of testosterone as a »prehormone«. The possibility that similar events take place in tissues responding to progesterone is discussed. Finally, the role of hormone metabolism in the regulation of hormone availability and/or renewal in target cells is discussed. In this context, reference is made to the potential role of plasma binding proteins and cytosol receptors.


1995 ◽  
Vol 19 (3) ◽  
pp. 147-153 ◽  
Author(s):  
Manjinder Kaur HUNDAL ◽  
Sangeeta JNAGAL ◽  
Krishan Lal KHANDUJA ◽  
Nirmal Kumar GNGULY

2020 ◽  
Vol 21 (14) ◽  
pp. 1152-1160
Author(s):  
Imadeldin Elfaki ◽  
Rashid Mir ◽  
Faisel Mohammed Abu-Duhier ◽  
Chandan Kumar Jha ◽  
Adel Ibrahim Ahmad Al-Alawy ◽  
...  

Background:: Cytochrome P450s (CYPs) are drug-metabolizing enzymes catalyzing the metabolism of about 75% of drug in clinical use. CYP2C9 represents 20% CYP proteins in liver cells and is a crucial member of CYPs superfamily. CYP2C19 metabolizes very important drugs such as antiulcer drug omeprazole, the antiplatelet drug clopidogrel and anticonvulsant mephenytoin. Single nucleotide polymorphisms (SNPs) of CYP genes have been associated with unexpected drug reactions and diseases in different populations. Objective:: We examined the associations of CYP2C9*3 (rs1057910) and CYP2C19*3 (rs4986893) with T2D in Saudi population. Methods:: We used the allele-specific PCR (AS-PCR) and DNA sequencing in 111 cases and 104 controls for rs1057910, and in 119 cases and 110 controls for rs4986893. Results:: It is indicated that the genotype distribution of rs1057910 in cases and controls were not significantly different (P=0.0001). The genotypes of rs1057910 were not associated with type 2 diabetes (T2D) (P>0.05). Whereas the genotype distribution of rs4986893 in cases and controls was significantly different (P=0.049). The AA genotype of rs4986893 may be associated in increased risk to T2D with OR=17.25 (2.06-143.8), RR=6.14(0.96-39.20), P=0.008. Conclusion:: The CYP2C9*3 (rs1057910) may not be associated with T2D, while CYP2C19*3 (rs4986893) is probably associated with T2D. These findings need to be validated in follow-up studies with larger sample sizes and different populations.


Sign in / Sign up

Export Citation Format

Share Document