Estrous cycle variation of afferent fibers supplying reproductive organs in the female rat

1992 ◽  
Vol 596 (1-2) ◽  
pp. 353-356 ◽  
Author(s):  
Ann Robins ◽  
Karen J. Berkley ◽  
Yuko Sato
1990 ◽  
Vol 63 (2) ◽  
pp. 256-272 ◽  
Author(s):  
K. J. Berkley ◽  
H. Hotta ◽  
A. Robbins ◽  
Y. Sato

1. Electrophysiological techniques were used to characterize responses of afferent fibers in pelvic nerve of adult, virgin female rats to mechanical or chemical stimulation of internal reproductive organs and to mechanical stimulation of other pelvic organs. 2. In an in vivo barbiturate-anesthetized preparation, pelvic nerve afferent fibers responded to a wide variety of mechanical stimulation applied to restricted regions of the vaginal canal, caudal uterus (body and cervix), bladder, ureter, colon, or anus. 3. Single-fiber mechanoreceptive fields were invariably confined to a single organ. Notably, responses could be evoked not only by gentle stimulation of the unit's receptive field directly on the organ itself, but also by stimulating the field indirectly with intense stimulation through the appropriate part of a contiguous organ. This innervation feature is consistent with the separability of pelvic organ functions under innocuous conditions but their confusion under noxious ones. 4. Receptive fields on the reproductive organs extended from the caudal edge of the vagina to the uterine body (including the cervix) but were most often located in the fornix (vaginocervical junction). Most units had no or low levels of spontaneous activity. Their responses to mechanical stimuli were usually slowly or moderately adapting and time-locked to the stimulus. 5. Fibers with vaginal receptive fields (including the fornix) responded best either to vaginal distension with a balloon or, more often, to a probe moving along the internal vaginal surface in a direction toward the cervix. They were observed most frequently during the proestrus stage of the rat's estrous cycle. These fibers, therefore, seem particularly suited for relaying information about stimuli that occur during mating. 6. Fibers with receptive fields on the uterine cervix and body responded best to static pressure and were observed less frequently than those with vaginal fields, regardless of estrous stage. They were, however, sensitized by hypoxia. In addition, irritation of the uterus increased the probability of observing them. These fibers, therefore, may exert their primary function during reproductive conditions different from those of virgin rats, such as parturition. 7. Response activity of most of the mechanoreceptive afferent fibers supplying reproductive organs increased as the stimulus intensity increased into the noxious range; i.e., into a range in which the stimulus momentarily produced ischemia at the stimulus site. In addition, in an in vitro preparation, pelvic nerve fibers responded in a dose-dependent manner to injections through the uterine artery of bradykinin (BRAD) as well as to other algesic chemicals, 5-hydroxytryptamine (5-HT) and KCl.(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 6 (4) ◽  
pp. 596-603 ◽  
Author(s):  
Tom L. Broderick ◽  
Peter Wong
Keyword(s):  

2019 ◽  
Vol 39 (1) ◽  
pp. 20-29
Author(s):  
Nayeli Meléndez-García ◽  
Fátima García-Ibarra ◽  
Patricia Bizarro-Nevares ◽  
Marcela Rojas-Lemus ◽  
Nelly López-Valdez ◽  
...  

Vanadium is a metal present in particulate matter and its reprotoxic effects have been demonstrated in males and pregnant females in animal models. However, the effects of this metal on the reproductive organs of nonpregnant females have not been sufficiently studied. In a vanadium inhalation model in nonpregnant female mice, we found anestrous and estrous cycle irregularity, as well as low serum concentrations of 17β-estradiol and progesterone. A decrease in the diameter of secondary and preovulatory follicles, as well as a thickening of the myometrium and endometrial stroma, was observed in the vanadium-treated mice. There was no difference against the control group with respect to the presence of the estrogen receptor α in the uterus of the animals during the estrous stage. Our results indicate that when vanadium is administered by inhalation, effects are observed on the female reproductive organs and the production of female sex hormones.


1985 ◽  
Vol 5 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Astrid Nehlig ◽  
Linda J. Porrino ◽  
Alison M. Crane ◽  
Louis Sokoloff

The quantitative 2-[14C]deoxyglucose autoradiographic method was used to study the fluctuations of energy metabolism in discrete brain regions of female rats during the estrous cycle. A consistent though statistically nonsignificant cyclic variation in average glucose utilization of the brain as a whole was observed. Highest levels of glucose utilization occurred during proestrus and metestrus, whereas lower rates were found during estrus and diestrus. Statistically significant fluctuations were found specifically in the hypothalamus and in some limbic structures. Rates of glucose utilization in the female rat brain were compared with rates in normal male rats. Statistically significant differences between males and females at any stage of the estrous cycle were confined mainly to hypothalamic areas known to be involved in the control of sexual behavior. Glucose utilization in males and females was not significantly different in most other cerebral structures.


1986 ◽  
Vol 381 (2) ◽  
pp. 376-381 ◽  
Author(s):  
Lynda Uphouse ◽  
Judy Williams ◽  
Kris Eckols ◽  
Victor Sierra

Sign in / Sign up

Export Citation Format

Share Document