Gas-liquid oxygen transfer characteristics in an aerobic submerged biofilter for the wastewater treatment

1992 ◽  
Vol 47 (13-14) ◽  
pp. 3745-3752 ◽  
Author(s):  
Koichi Fujie ◽  
Hong-Ying Hu ◽  
Yasou Ikeda ◽  
Kohei Urano
1991 ◽  
Vol 14 (9) ◽  
pp. 623-632,613 ◽  
Author(s):  
Koichi FUJIE ◽  
Hong-Ying HU ◽  
Yasuo IKEDA ◽  
Kohei URANO

1992 ◽  
Vol 26 (3-4) ◽  
pp. 461-472 ◽  
Author(s):  
O. E. Albertson ◽  
P. Hendricks

A 1630 L/s activated sludge plant at Phoenix was limited to an average rate of 1050 L/s and operated, at 400-600 mg/L MLSS and 0.8-1.3 day solids retention time (SRT) due to bulking sludge and limited clarification capacity. Higher SRTs also produced uncontrolled Nocardia foaming and low dissolved oxygen due to partial nitrification. The City retained the services of a team of consultants to resolve these problems as well as to upgrade the plant to provide nitrification and total nitrogen removal. An anoxic selector design was implemented within the existing basin and the clarifiers were modified to improve inlet design and sludge transport. The modified advanced wastewater treatment (AWT) plant operating at 1450 L/s has averaged an effluent of 7.6 mg/L BOD5, 8.2 mg/L TSS, 1.3 mg/L NH4N, 4.1 mg/L NO3N and 2.9 mg/L TP. Oxygen transfer efficiency has increased about 80% in the nitrification-denitrification (NdeN) mode. The cost of modification/upgrading to AWT was approximately $730,000 and a 400 L/s increase in hydraulic capacity was realized. Upgrading costs were $5.63/m3 ($0.02/gal.)


1993 ◽  
Vol 28 (7) ◽  
pp. 243-250 ◽  
Author(s):  
Y. Suzuki ◽  
S. Miyahara ◽  
K. Takeishi

Gas-permeable film can separate air and water, and at the same time, let oxygen diffuse from the air to the water through the film. An oxygen supply method using this film was investigated for the purpose of reducing energy consumption for wastewater treatment. The oxygen transfer rate was measured for the cases with or without biofilm, which proved the high rate of oxygen transfer in the case with nitrifying biofilm which performed nitrification. When the Gas-permeable film with nitrifying biofilm was applied to the treatment of wastewater, denitrifying biofilm formed on the nitrifying biofilm, and simultaneous nitrification and denitrification occurred, resulting in the high rate of organic matter and T-N removal (7 gTOC/m2/d and 4 gT-N/m2/d, respectively). However, periodic sloughing of the denitrifying biofilm was needed to keep the oxygen transfer rate high. Energy consumption of the process using the film in the form of tubes was estimated to be less than 40% of that of the activated sludge process.


AIChE Journal ◽  
1980 ◽  
Vol 26 (6) ◽  
pp. 1008-1012 ◽  
Author(s):  
Y. H. Lee ◽  
G. T. Tsao ◽  
P. C. Wankat

2021 ◽  
pp. 1-16
Author(s):  
Abdel Rahman Salem ◽  
Alaa Hasan ◽  
Ahmad Abdelhadi ◽  
Saif Al Hamad ◽  
Mohammad Qandil ◽  
...  

Abstract This study targets one of the major energy consumers in the U.S. It suggests a new mechanical system that can recover a portion of the energy in Wastewater Treatment Plants (WWTPs). The proposed system entails a hydro-turbine installed above the air diffuser in the aeration tank to extract the water-bubble current's kinetic energy and converts it to electricity. Observing the optimum location of the turbine required multiple experiments where turbine height varies between 35% and 95% (water height percentages above the diffuser), while varying the airflow between 1.42 L/s (3 CFM) and 2.12 L/s (4.5 CFM) with a 0.24 L/s (0.5 CFM) increment. Additionally, three water heights of 38.1 cm (15”), 53.4 cm (21”), and 68.6 cm (27”) were considered to study the influence of the water height. It was noticed that the presence of the system has an adverse effect on the Standard Oxygen Transfer Efficiency (SOTE). Therefore, a small dual-blade propeller was installed right above the diffuser to directly mix the water in the bottom of the tank with the incoming air to enhance the SOTE. The results showed that the maximum reclaimed power was obtained where the hydro-turbine is installed at 65% - 80% above the diffuser. A reduction of up to 7.32% in SOTE was observed when the setup was placed inside the tank compared to the tank alone. The addition of the dual-blade propeller showed an increase in SOTE of 7.27% with a power loss of 6.21%, ensuring the aeration process was at its standards.


2016 ◽  
Vol 10 (8) ◽  
pp. 142 ◽  
Author(s):  
Gustavo Andrés Baquero-Rodríguez ◽  
Jaime A. Lara-Borrero

Aeration is usually the most energy intensive part of the wastewater treatment process. Optimizing the aeration system is essential for reducing energy costs. Field tests oriented to estimate parameters related to oxygen transfer are a common approach to compare aeration systems. The aim of this research is to assess the effect of dissolved oxygen probe lag on oxygen transfer parameter estimation. Experimental procedures regarding to process automation and control were applied to quantify dissolved oxygen probe lag. We have measured oxygen transfer in clean water, under a wide range of conditions (airflow rate, diffuser characteristics and diffuser density), with optic and polarographic sensors for dissolved oxygen measurement. The oxygen transfer was measured as per ASCE Standard procedures. Nonparametric statistical tests were used to compare the estimated volumetric mass transfer coefficient KLa with different sensors. According to the results, there is not significant influence of the probe lag (also known as time constant) or probe characteristics on the parameters used to assess oxygen transfer efficiency. This fact has great relevance in common practice of aerobic process for wastewater treatment because dissolved oxygen monitoring is used as an input for decision making related to the energy optimization in the aeration system. Findings from these tests contradict previous studies which claim that lag time in polarographic sensors for the dissolved oxygen measurement can bias estimate KLa.


Author(s):  
Carsten Schroer ◽  
Olaf Wedemeyer ◽  
Juergen Konys

The concept of minimizing steel corrosion in liquid lead-alloys by addition of oxygen strongly depends on the availability of efficient devices for oxygen transfer and reliable oxygen sensors. The accuracy of electrochemical oxygen sensors is analyzed on the basis of theoretical considerations and results from experiments in stagnant lead-bismuth eutectic (LBE). Additionally, the feasibility of gas/liquid oxygen-transfer and the long-term performance of electrochemical sensors in flowing liquid metal are addressed based on operation of the CORRIDA loop, a facility for testing steels in flowing LBE.


2015 ◽  
Vol 809-810 ◽  
pp. 1573-1578
Author(s):  
Casen Panaitescu ◽  
Monica Emanuela Stoica ◽  
Ciner Fehiman

Manufacture of wastewater treatment technologies is an important issue due to the complexity of design parameters and performance. Biological wastewater treatment is a process in which the intensity of oxygen transfer into water is an issue that has been extensively studied but yet insufficiently resolved. The present paper aims to describe an aeration system developed by the author in the laboratory by means of non-conventional technologies, and subsequently implemented in refinery wastewater treatment plants. The aeration system takes the form of modules, which are equipped with a new type of membrane. The analysis of the system performance revealed that oxygen transfer was 62%, specific adsorption of oxygen was 37 % and the specific oxygen transfer was 7%/m. The advantages of this new system are as follows: compared to existing technologies there is a higher rate of oxygen transfer into water; longer life; there are no dead zones in the basin as a result of their location; possibility of operating on separate sections.


Author(s):  
Bryan A. Miletta ◽  
R. S. Amano ◽  
Ammar A. T. Alkhalidi ◽  
Jin Li

Aeration, a unit process in which air and water are brought into intimate contact, is an extremely important step in the process of wastewater treatment. The two most common systems of aeration are subsurface and mechanical. A mechanical system agitates the wastewater by various means (e.g. paddles, blades, or propellers) to introduce air from the atmosphere. Subsurface aeration is the release of air, in the form of bubbles, within the tank of wastewater to supply the microorganisms with the required amount of oxygen they need to metabolize and break down the organic material suspended in the wastewater. The bubbles of Air are released from the bottom of the wastewater tank through diffusers. These diffusers have a surface membrane, usually made of punched rubber, to create the fine bubbles with high oxygen transfer efficiency from supplied air to the diffusers. Since the energy crisis in the early 1970’s, there has been increased interest in these systems due to its high oxygen transfer efficiency. This paper covers experimentation of different air diffuser membranes, varying in material, used in the aeration process of wastewater treatment. Rubber, EPDM rubber (ethylene-propylene-diene Monomer) and PTFE Polytetrafluoroethylene membranes coated membranes were tested. Experimental results showed that the rubber membrane produced the smallest bubble size against expectation. This could be a result of the coating being on the top surface only and the bubble starts from inside the punch.


Sign in / Sign up

Export Citation Format

Share Document