Epitaxial growth of two-dimensional cyanine dye single crystals by adsorption at a pre-conditioned fatty acid monolayer

1990 ◽  
Vol 165 (1) ◽  
pp. 54-58 ◽  
Author(s):  
Franz-Josef Schmitt ◽  
Wolfgang Knoll
Author(s):  
Xiaoqiu Guo ◽  
Ruixin Yu ◽  
Jingwen Jiang ◽  
Zhuang Ma ◽  
Xiuwen Zhang

Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI’s) host many interesting physical properties such...


2014 ◽  
Vol 9 (12) ◽  
pp. 1024-1030 ◽  
Author(s):  
Xidong Duan ◽  
Chen Wang ◽  
Jonathan C. Shaw ◽  
Rui Cheng ◽  
Yu Chen ◽  
...  

SmartMat ◽  
2021 ◽  
Author(s):  
Yihe Wang ◽  
Shuo Sun ◽  
Jialin Zhang ◽  
Yu Li Huang ◽  
Wei Chen

2001 ◽  
Vol 696 ◽  
Author(s):  
Stéphane Andrieu ◽  
Pascal Turban ◽  
Laurent Lapena ◽  
Pierre Muller

AbstractThe analysis of RHEED diffraction peaks during two-dimensional (2D) pseudomorphic epitaxial growth leads to the well known RHEED oscillations but also to diffraction peak width and in-plane lattice spacing oscillations. These behaviors are evidenced in several metallic A/B systems in this paper. As in-plane lattice spacing oscillations are assumed to be due to elastic relaxation at the edge of the 2D Islands, we try to correlate the amplitude of the detected effect with the misfit. The width oscillations are assumed to be due to the scattering coming from islands. We actually show that the full width at half maximum (FWHM) at half coverage allows us to get a correct estimation of the nucleation density. We thus show experimentally that the in-plane lattice spacing oscillations amplitude depends on the nucleation density determined using FWHM measurements. Finally, a theoretical justification allows us to show that this amplitude also depends on the Young modulus ratio of both B and A layers.


2019 ◽  
Author(s):  
Roberto Köferstein

Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in anaqueous silica gel. Space group P-1 (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms ofthe pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm;Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4− yields infinite strands,which are linked by pyrazine molecules to form a two-dimensional coordination polymer.Thermogravimetric analysis in air showed that the dehydrated compound was stable between175 and 248 °C. Further heating yielded CuO.


Sign in / Sign up

Export Citation Format

Share Document