Comparative estimate of a Nansen and microbiological water bottle for sterile collection of water samples from depths of seas and oceans

1966 ◽  
Vol 13 (2) ◽  
pp. 205-212 ◽  
Author(s):  
A.E. Kriss ◽  
M.N. Lebedeva ◽  
A.V. Tsiban
Author(s):  
Mary Parke ◽  
Irene Manton ◽  
B. Clarke

The new species to be described here is very common in the English Channel, though like other members of this genus it is so fragile that it needs to be cultured to be effectively detected. This particular species has been under observation for some years, but publication has been deferred until sections of it could be made available. The observations involved in the taxonomic description have been based on two early isolates numbered 4 and 43 in the Plymouth collection. More recently, however, it has been encountered frequently in routine sea-water samples brought into temporary culture to record the nanoplankton forms present, and we are therefore able for the first time to give tables of seasonal and depth distributions for the incidence of the species, at various stations. In Table i of Appendix (p. 187) its occurrences are listed, all being from water-bottle samples, except those taken on 23 August 1950 and 6 November 1957 (fine tow-net) and on 19 June 1957 (very fine tow-net). Table 2 (p. 188) gives densities at different depths sampled on one day at Hydrographic Station E 1.


1931 ◽  
Vol 6 (1) ◽  
pp. 417-422
Author(s):  
O. C. YOUNG ◽  
D. B. FINN ◽  
R. H. BEDFORD

A metal water bottle acting on the principle of a piston in a water tight cylinder has been devised as a simple, strong, and easily operated apparatus for taking water samples for bacteriological purposes at any depth without the danger of contamination by the upper layers of the sea.


Author(s):  
Sophie Fantillo ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Helen Heacock

  Background: Heterotrophic bacteria are commonly found in water supplies where there is inadequate or non-existent disinfection. Water coolers are known to have high HPC levels due to the filtered, non-chlorinated water provided. Water bottle refill stations utilize a carbon filter which can act as a food source for HPC. This study measured HPC levels in water samples from bottle refill stations to determine whether there is a difference compared to tap water at BCIT. Method: Standard Method 9060 A was used to collect water from bottle refill stations to compare to non-filtered tap water. Samples were plated using R2A Agar and incubated for 7 days before enumerating HPC from water samples. Samples were collected from specific drinking water fountains that contained Carbon Filters and compared to the nearest tap water source. Results: Mean HPC levels in bottle refill stations were found at 95 cfu/mL while mean HPC levels in tap water were 55 cfu/mL. A two-sample T-test confirmed that the mean HPC levels of bottle refill stations and tap water are statistically significantly different (P= 0.000124). Although the findings were statistically significant, the study’s power was low at 11%. Conclusion: Based on the results, drinking water obtained from bottle-refill stations at BCIT contained on an average higher level of HPC compared to tap water. Overall, HPC levels were below recommended levels in drinking water and not considered to have any harmful effects. To continue the safe use of bottle refill stations, facilities should develop and follow written procedures to maintain stations and ensure regular changing of filters.  


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson ◽  
C. W. Walker

Selected area electron diffraction (SAD) has been used successfully to determine crystal structures, identify traces of minerals in rocks, and characterize the phases formed during thermal treatment of micron-sized particles. There is an increased interest in the method because it has the potential capability of identifying micron-sized pollutants in air and water samples. This paper is a short review of the theory behind SAD and a discussion of the sample preparation employed for the analysis of multiple component environmental samples.


Author(s):  
O. Mudroch ◽  
J. R. Kramer

Approximately 60,000 tons per day of waste from taconite mining, tailing, are added to the west arm of Lake Superior at Silver Bay. Tailings contain nearly the same amount of quartz and amphibole asbestos, cummingtonite and actinolite in fibrous form. Cummingtonite fibres from 0.01μm in length have been found in the water supply for Minnesota municipalities.The purpose of the research work was to develop a method for asbestos fibre counts and identification in water and apply it for the enumeration of fibres in water samples collected(a) at various stations in Lake Superior at two depth: lm and at the bottom.(b) from various rivers in Lake Superior Drainage Basin.


2006 ◽  
Vol 133 ◽  
pp. 1093-1095 ◽  
Author(s):  
E. Henry ◽  
S. Brygoo ◽  
P. Loubeyre ◽  
M. Koenig ◽  
A. Benuzzi-Mounaix ◽  
...  
Keyword(s):  

2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AJAY KUMAR RAJAWAT ◽  
PRAVEEN KUMAR

An attempt has been made to study the Physico-chemical condition of water of Yamuna River at Gokul Barrage, Mathura, (UP). The time period of study was July 2015 to June 2016. Three water samples were selected from different sites in each month for study. The parameters studied were Temperature, Turbidity, pH, DO, BOD, COD, Total Dissolved Solids and Suspended Solids. Almost all the parameters were found above the tolerance limit.


2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


Sign in / Sign up

Export Citation Format

Share Document