Actin filament formation in pancreatic β-cells during glucose stimulation of insulin secretion

FEBS Letters ◽  
1980 ◽  
Vol 117 (1-2) ◽  
pp. 299-302 ◽  
Author(s):  
Sara K. Swanston-Flatt ◽  
L. Carlsson ◽  
E. Gylfe
1980 ◽  
Vol 85 (3) ◽  
pp. 321-329 ◽  
Author(s):  
Bo Hellman ◽  
Erik Gylfe ◽  
Per-Olof Berggren ◽  
Tommy Andersson ◽  
Håkan Abrahamsson ◽  
...  

2000 ◽  
Vol 28 (5) ◽  
pp. A196-A196
Author(s):  
A. Shine ◽  
N. H. Mc Clenaghan ◽  
P. Flatt ◽  
JPG Malthouse ◽  
C. Hewage ◽  
...  

Endocrinology ◽  
1997 ◽  
Vol 138 (10) ◽  
pp. 4513-4516 ◽  
Author(s):  
Yukio Tanizawa ◽  
Shigeru Okuya ◽  
Hisamitsu Ishihara ◽  
Tomoichiro Asano ◽  
Toshihiko Yada ◽  
...  

2016 ◽  
Vol 231 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Xiwen Xiong ◽  
Xupeng Sun ◽  
Qingzhi Wang ◽  
Xinlai Qian ◽  
Yang Zhang ◽  
...  

Chronic exposure of pancreatic β-cells to abnormally elevated levels of free fatty acids can lead to β-cell dysfunction and even apoptosis, contributing to type 2 diabetes pathogenesis. In pancreatic β-cells, sirtuin 6 (SIRT6) has been shown to regulate insulin secretion in response to glucose stimulation. However, the roles played by SIRT6 in β-cells in response to lipotoxicity remain poorly understood. Our data indicated that SIRT6 protein and mRNA levels were reduced in islets from diabetic and aged mice. High concentrations of palmitate (PA) also led to a decrease in SIRT6 expression in MIN6 β-cells and resulted in cell dysfunction and apoptosis. Knockdown of Sirt6 caused an increase in cell apoptosis and impairment in insulin secretion in response to glucose in MIN6 cells even in the absence of PA exposure. Furthermore, overexpression of SIRT6 alleviated the palmitate-induced lipotoxicity with improved cell viability and increased glucose-stimulated insulin secretion. In summary, our data suggest that SIRT6 can protect against palmitate-induced β-cell dysfunction and apoptosis.


2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Jonathan S. Bogan

Pancreatic β cells secrete insulin in response to increased glucose concentrations. Müller et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010039) use 3D FIB-SEM to study the architecture of these cells and to elucidate how glucose stimulation remodels microtubules to control insulin secretory granule exocytosis.


2020 ◽  
Vol 33 (5) ◽  
pp. 671-674
Author(s):  
Tashunka Taylor-Miller ◽  
Jayne Houghton ◽  
Paul Munyard ◽  
Yadlapalli Kumar ◽  
Clinda Puvirajasinghe ◽  
...  

AbstractBackgroundCongenital hyperinsulinism (CHI), a condition characterized by dysregulation of insulin secretion from the pancreatic β cells, remains one of the most common causes of hyperinsulinemic, hypoketotic hypoglycemia in the newborn period. Mutations in ABCC8 and KCNJ11 constitute the majority of genetic forms of CHI.Case presentationA term macrosomic male baby, birth weight 4.81 kg, born to non-consanguineous parents, presented on day 1 of life with severe and persistent hypoglycemia. The biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and progressively increased to 15 mg/kg/day to maintain normoglycemia. Sequence analysis identified compound heterozygous mutations in ABCC8 c.4076C>T and c.4119+1G>A inherited from the unaffected father and mother, respectively. The mutations are reported pathogenic. The patient is currently 7 months old with a sustained response to diazoxide.ConclusionsBiallelic ABCC8 mutations are known to result in severe, diffuse, diazoxide-unresponsive hypoglycemia. We report a rare patient with CHI due to compound heterozygous mutations in ABCC8 responsive to diazoxide.


Sign in / Sign up

Export Citation Format

Share Document