Carnitine cycle in brown adipose tissue mitochondria as a tool for studying the regulatory role of fatty acids in the uncoupling protein function

FEBS Letters ◽  
1989 ◽  
Vol 243 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Petr Ježek ◽  
Inna P. Krasinskaya ◽  
Ira Smirnova ◽  
Zdenék Drahota
1988 ◽  
Vol 255 (6) ◽  
pp. R874-R881 ◽  
Author(s):  
I. R. Park ◽  
J. Himms-Hagen

We studied the role of the sympathetic innervation in development and maintenance of increased levels of uncoupling protein (UCP) and of thyroxine 5'-deiodinase (TD) during cold-induced growth of brown adipose tissue (BAT). Interscapular BAT was unilaterally (and in some experiments, bilaterally) denervated either before acclimation to cold (4 degrees C) for 12 days or after 14 days of a total 28-day period of acclimation to cold. BAT norepinephrine was reduced to 3-7% of the normal level in denervated BAT for up to 26 days. Denervation slowed, but did not prevent, cold-induced increases in total protein, in mitochondrial GDP binding, and in mitochondrial UCP concentration, which all reached 50% or more of the elevated level in intact tissue. In contrast, TD activity did not exceed 10% of the elevated level in intact tissue at any time. Denervation after cold acclimation resulted in a very rapid loss of TD activity, a slower and selective loss (after a lag of 1 day) of UCP, and a much slower loss of tissue protein. We conclude that the sympathetic innervation is required for an optimal trophic response of BAT to cold acclimation and for maintenance in the hypertrophied state but that other factors are also involved. Induction and maintenance of TD in BAT does need the sympathetic innervation.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 904 ◽  
Author(s):  
Linjie Wang ◽  
Xin Yang ◽  
Yuehua Zhu ◽  
Siyuan Zhan ◽  
Zhe Chao ◽  
...  

Long noncoding RNAs (lncRNAs) play an important role in the thermogenesis and energy storage of brown adipose tissue (BAT). However, knowledge of the cellular transition from BAT to white adipose tissue (WAT) and the potential role of lncRNAs in goat adipose tissue remains largely unknown. In this study, we analyzed the transformation from BAT to WAT using histological and uncoupling protein 1 (UCP1) gene analyses. Brown adipose tissue mainly existed within the goat perirenal fat at 1 day and there was obviously a transition from BAT to WAT from 1 day to 1 year. The RNA libraries constructed from the perirenal adipose tissues of 1 day, 30 days, and 1 year goats were sequenced. A total number of 21,232 lncRNAs from perirenal fat were identified, including 5393 intronic-lncRNAs and 3546 antisense-lncRNAs. Furthermore, a total of 548 differentially expressed lncRNAs were detected across three stages (fold change ≥ 2.0, false discovery rate (FDR) < 0.05), and six lncRNAs were validated by qPCR. Furthermore, trans analysis found lncRNAs that were transcribed close to 890 protein-coding genes. Additionally, a coexpression network suggested that 4519 lncRNAs and 5212 mRNAs were potentially in trans-regulatory relationships (r > 0.95 or r < −0.95). In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the targeted genes were involved in the biosynthesis of unsaturated fatty acids, fatty acid elongation and metabolism, the citrate cycle, oxidative phosphorylation, the mitochondrial respiratory chain complex, and AMP-activated protein kinase (AMPK) signaling pathways. The present study provides a comprehensive catalog of lncRNAs involved in the transformation from BAT to WAT and provides insight into understanding the role of lncRNAs in goat brown adipogenesis.


1998 ◽  
Vol 275 (2) ◽  
pp. C496-C504 ◽  
Author(s):  
Petr Jezek ◽  
Jirí Borecky

The physiological role of monocarboxylate transport in brown adipose tissue mitochondria has been reevaluated. We studied pyruvate, α-ketoisovalerate, α-ketoisocaproate, and phenylpyruvate uniport via the uncoupling protein (UCP1) as a GDP-sensitive swelling in K+ salts induced by valinomycin or by monensin and carbonyl cyanide- p-(trifluoromethoxy)phenylhydrazone in Na+ salts. We have demonstrated that this uniport is inhibited by fatty acids. GDP inhibition in K+ salts was not abolished by an uncoupler, indicating a negligible monocarboxylic acid penetration via the lipid bilayer. In contrast, the electroneutral pyruvate uptake (swelling in ammonium pyruvate or potassium pyruvate induced by change in pH) mediated by the pyruvate carrier was inhibited by its specific inhibitor α-cyano-4-hydroxycinnamate but not by fatty acids. Moreover, α-cyano-4-hydroxycinnamate enhanced the energization of brown adipose tissue mitochondria, which was monitored fluorometrically by 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide and safranin O. Consequently, we suggest that UCP1 might participate in futile cycling of unipolar ketocarboxylates under certain physiological conditions while expelling these anions from the matrix. The cycle is completed on their return via the pyruvate carrier in an H+ symport mode.


1989 ◽  
Vol 257 (1) ◽  
pp. E81-E87 ◽  
Author(s):  
I. R. Park ◽  
D. B. Mount ◽  
J. Himms-Hagen

Cold-induced growth of brown adipose tissue (BAT) was studied in thyroidectomized rats that received low doses of either thyroxine (T4) or 3,5,3'-triidothyronine (T3). The objective was to find out whether the cold-induced increase in activity of T4 5'-deiodinase, and thus increased endogenous T3 generation in BAT itself, was necessary for growth of BAT or whether T3 from the blood could serve as effectively as T3 produced endogenously. The acute thermogenic response of BAT to cold (15 h at 4 degrees C), as measured by the increase in mitochondrial GDP binding, was abolished by thyroidectomy, as seen previously, and restored by T3 as well as by T4 treatment. The long-term trophic response to cold (20–25 days at 4 degrees C), as indicated by increases in protein and DNA and in mitochondrial concentrations of GDP-binding sites and uncoupling protein, occurred whether T3 or T4 was administered to these thyroidectomized rats. We conclude that endogenous T3 production in BAT does not direct and is not essential for the long-term trophic response of this tissue to cold. We are not able to exclude, on the basis of the present results, that an optimal growth rate during the initial phase of the trophic response may require enhanced endogenous production of T3 in BAT. The cold-induced increase in T4 5'-deiodinase activity, presumably mediated by an action of norepinephrine, does not require the presence of either T3 or T4, as seen previously by others.


2018 ◽  
Vol 120 (6) ◽  
pp. 619-627 ◽  
Author(s):  
Perla P. Argentato ◽  
Helena de Cássia César ◽  
Débora Estadella ◽  
Luciana P. Pisani

AbstractBrown adipose tissue (BAT) has recently been given more attention for the part it plays in obesity. BAT can generate great amounts of heat through thermogenesis by the activation of uncoupling protein 1 (UCP-1), which can be regulated by many environmental factors such as diet. Moreover, the build-up of BAT relates to maternal nutritional changes during pregnancy and lactation. However, at present, there is a limited number of studies looking at maternal nutrition and BAT development, and it seems that the research trend in this field has been considerably declining since the 1980s. There is much to discover yet about the role of different fatty acids on the development of BAT and the activation of UCP-1 during the fetal and the postnatal periods of life. A better understanding of the impact of nutritional intervention on the epigenetic regulation of BAT could lead to new preventive care for metabolic diseases such as obesity. It is important to know in which circumstances lipids could programme BAT during pregnancy and lactation. The modification of maternal dietary fatty acids, amount and composition, during pregnancy and lactation might be a promising strategy for the prevention of obesity in the offspring and future generations.


Sign in / Sign up

Export Citation Format

Share Document