Stimulation of gastrin secretion in vitro by intraluminal chemicals: Regulation by intramural cholinergic and noncholinergic neurons

1984 ◽  
Vol 87 (3) ◽  
pp. 557-561 ◽  
Author(s):  
B. Saffouri ◽  
J.W. DuVal ◽  
G.M. Makhlouf
1985 ◽  
Vol 248 (4) ◽  
pp. E425-E431 ◽  
Author(s):  
S. Nishi ◽  
Y. Seino ◽  
J. Takemura ◽  
H. Ishida ◽  
M. Seno ◽  
...  

The effect of electrical stimulation of the vagus nerves on the release of immunoreactive gastrin-releasing peptide (GRP), gastrin, and somatostatin was investigated using the isolated perfused rat stomach. Electrical stimulation (10 Hz, 1 ms duration, 10 V) of the peripheral end of the subdiaphragmatic vagal trunks produced a significant increase in both GRP and gastrin but a decrease in somatostatin. The infusion of atropine sulfate at a concentration of 10(-5) M augmented GRP release and reversed the decrease in somatostatin release in response to vagal stimulation to an increase above basal levels. However, the gastrin response to vagal stimulation was not affected by atropine. The infusion of hexamethonium bromide at a concentration of 10(-4) M significantly suppressed GRP release but did not affect gastrin secretion in response to vagal stimulation. On the other hand, the somatostatin response to vagal stimulation was completely abolished by hexamethonium. These findings lead us to conclude that the intramural GRP neurons might play an important role in the regulation of gastrin as well as somatostatin secretion and that somatostatin secretion may be controlled not only by a cholinergic inhibitory neuron but also by a noncholinergic, e.g., peptidergic stimulatory neuron, both of which may be regulated through preganglionic vagal fibers via nicotinic receptors. In addition, because the infusion of 10(-7) M GRP suppressed the somatostatin secretion, we suggest that either GRP should be excluded from the list of candidates for the noncholinergic stimulatory neurotransmitter for somatostatin secretion or that there are different mechanisms of action for endogenous and exogenous GRP.


1989 ◽  
Vol 257 (2) ◽  
pp. E235-E240
Author(s):  
H. Mukai ◽  
K. Kawai ◽  
S. Suzuki ◽  
H. Ohmori ◽  
K. Yamashita ◽  
...  

COOH-terminal decapeptide of gastrin-releasing peptide (GRP-10) is a bombesin-like peptide, which has bioactivities to stimulate gastrin, insulin, and glucagon secretion. We have synthesized an analogue of GRP-10 that inhibits GRP-10's stimulation of insulin secretion both in vivo and in vitro and glucagon secretion in vivo, while potentiating the stimulation of gastrin secretion. The amino acid sequence of this peptide is H-Gly-Asn-Trp-Ala-Ala-Gly-His-Leu-Met-NH2 ([Ala6]GRP-10). Because the stimulation of insulin and gastrin secretion by GRP-10 has been ascribed to a direct effect on B- and G-cells, these findings suggest that there are two subtypes of receptors for bombesin-like peptides in mammalian tissues.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


1962 ◽  
Vol 39 (3) ◽  
pp. 423-430
Author(s):  
H. L. Krüskemper ◽  
F. J. Kessler ◽  
E. Steinkrüger

ABSTRACT 1. Reserpine does not inhibit the tissue respiration of liver in normal male rats (in vitro). 2. The decrease of tissue respiration of the liver with simultaneous morphological stimulation of the thyroid gland after long administration of reserpine is due to a minute inhibition of the hormone synthesis in the thyroid gland. 3. The morphological alterations of the thyroid in experimental hypothyroidism due to perchlorate can not be prevented with reserpine.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document