Protein synthesis during flight muscle development in normal and wupB indirect flight muscles of Drosophila melanogaster

1989 ◽  
Vol 19 (8) ◽  
pp. 723-729 ◽  
Author(s):  
Stephen D. Menke ◽  
Nancy S. Petersen
1989 ◽  
Vol 109 (5) ◽  
pp. 2157-2167 ◽  
Author(s):  
J D Saide ◽  
S Chin-Bow ◽  
J Hogan-Sheldon ◽  
L Busquets-Turner ◽  
J O Vigoreaux ◽  
...  

Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.


2020 ◽  
Vol 64 (1-2-3) ◽  
pp. 167-173
Author(s):  
Saroj Jawkar ◽  
Upendra Nongthomba

Myogenesis is a complex multifactorial process leading to the formation of the adult muscle. An amalgamation of autonomous processes including myoblast fusion and myofibrillogenesis, as well as non-autonomous processes, such as innervations from neurons and precise connections with attachment sites, are responsible for successful development and function of muscles. In this review, we describe the development of the indirect flight muscles (IFMs) in Drosophila melanogaster, and highlight the use of the IFMs as a model for studying muscle development and disease, based on recent studies on the development and function of IFMs.


Development ◽  
1993 ◽  
Vol 118 (1) ◽  
pp. 215-227 ◽  
Author(s):  
J. Fernandes ◽  
K. VijayRaghavan

We have examined the development of innervation to the indirect flight muscles of Drosophila. During metamorphosis, the larval intersegmental nerve of the mesothorax is remodelled to innervate the dorsal longitudinal muscles and two of the dorsoventral muscles. Another modified larval nerve innervates the remaining dorsoventral muscle. The dorsal longitudinal muscles develop using modified larval muscles as templates while dorsoventral muscles develop without the use of such templates. The development of innervation to the two groups of indirect flight muscles differs in spatial and temporal patterns, which may reflect the different ways in which these muscles develop. The identification of myoblasts associated with thoracic nerves during larval life and the association of migrating myoblasts with nerves during metamorphosis indicate the existence of nerve-muscle interactions during indirect flight muscle development. In addition, the developing pattern of axonal branching suggests a role for the target muscles in respecifying neuromuscular junctions during metamorphosis.


Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 35-63
Author(s):  
I. I. Deak

Eight X-chromosome mutations (falling into five complementation groups) that affect the development and morphology of the indirect flight muscles of Drosophila melanogaster were investigated using histological, behavioural and genetic techniques. All of these mutations result in Sightlessness, in a marked reduction in the ability of the flies to jump, and in the wings being held in abnormal positions. Mutations in each of the complementation groups have different effects on the morphology of the muscles. Two (flapwing, vertical wing) result in absence of most of the indirect flight muscle fibres, a third (upheld) is required for the gross organization of muscle structure, another (heldup) is involved in the maintenance of muscle structure once formed, and the fifth seems to be necessary for the detailed architecture of the muscle fibre (indented thorax). The analysis of flies genetically mosaic with respect to each mutation by the technique of fate-mapping suggests that three (heldup, upheld and indented thorax) of the genes concerned have their primary site of action in the musculature itself, while the other two(flapwing and vertical wing) may function primarily in the fat-body and tracheae respectively.


1987 ◽  
Vol 7 (9) ◽  
pp. 3084-3091
Author(s):  
C C Karlik ◽  
D L Saville ◽  
E A Fyrberg

We have characterized two extant mutations of the flight muscle-specific act88F actin gene of Drosophila melanogaster. Both defective alleles were recovered from flightless mutants isolated previously (K. Mogami and Y. Hotta, Mol. Gen. Genet. 183:409-417, 1981). By directly sequencing the mutant alleles, we demonstrated that in act88FIfm(3)2 a single G-C to A-T transition converted arginine-28 to cysteine and that in act88FIfm(3)4 a single A-T to T-A transversion changed isoleucine-76 to phenylalanine. We showed that the actins encoded by either allele were strongly antimorphic. Mutant alleles effectively disrupted myofibril structure and function in the flight muscles of strains having the diploid complement of wild-type act88F genes. However, unlike antimorphic actins encoded by three previously characterized act88F alleles, neither that encoded by act88FIfm(3)2 nor that encoded by act88FIfm(3)4 was a strong inducer of heat shock protein synthesis.


Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 31-39 ◽  
Author(s):  
S. DeSimone ◽  
C. Coelho ◽  
S. Roy ◽  
K. VijayRaghavan ◽  
K. White

The erect wing locus of the fruit fly Drosophila melanogaster encodes a protein, EWG, that shares extensive homology with the P3A2 DNA binding protein of sea urchin and a recently identified mammalian transcription factor. Loss-of-function erect wing alleles result in embryonic lethality. Viable alleles of erect wing cause severe abnormalities of the indirect flight muscles. We have analyzed the spatial pattern of erect wing expression in the developing indirect flight muscles during postembryonic development. EWG is detected, 10 hours after puparium formation, in myoblasts that will form the indirect flight muscles. The early events of muscle development are normal in ewg mutants. However, a few hours after the onset of erect wing expression in myoblasts, defects are seen in the developing indirect flight muscles which subsequently degenerate. We present results that show that the normal development of the indirect flight muscles requires erect wing expression in the progenitor myoblasts themselves. Finally, we examine the role of target muscles in the arborization of motor axons by studying the developing innervation to the flight muscle in erect wing mutants. Our study demonstrates, for the first time, a role for a regulatory gene expressed in imaginal myoblasts in Drosophila.


2020 ◽  
Author(s):  
Nadia Daneshparvar ◽  
Dianne W. Taylor ◽  
Thomas S. O’Leary ◽  
Hamidreza Rahmani ◽  
Fatemeh Abbasi Yeganeh ◽  
...  

AbstractStriated muscle thick filaments are composed of myosin II and several non-myosin proteins. Myosin II’s long α-helical coiled-coil tail forms the dense protein backbone of filaments while its N-terminal globular head containing the catalytic and actin binding activities extends outward from the backbone. Here we report the structure of thick filaments of the flight muscle of the fruit fly Drosophila melanogaster at 7 Å resolution. Its myosin tails are arranged in curved molecular crystalline layers identical to flight muscles of the giant waterbug Lethocerus indicus. Four non-myosin densities are observed, three of which correspond to ones found in Lethocerus; one new density, possibly stretchin-Mlck, is found on the backbone outer surface. Surprisingly, the myosin heads are disordered rather than ordered along the filament backbone. Our results show striking myosin tail similarity within flight muscle filaments of two insect orders separated by several hundred million years of evolution.Significance StatementMyosin thick filaments are one of striated muscle’s key structures, but also one of its least understood. A key question is how the myosin a-helical coiled-coil tail is arranged in the backbone. At 7Å resolution, sufficient to resolve individual a-helices, the myosin tail arrangement in thick filaments from the flight muscle of the fruit fly Drosophila melanogaster is strikingly similar to the myosin tail arrangement in flight muscles of the giant waterbug Lethocerus indicus. Nearly every other thick filament feature is different. Drosophila and Lethocerus evolved separately >245 million years ago suggesting myosin tail packing into curved molecular crystalline layers forms a highly conserved thick filament building block and different properties are obtained by alterations in non-myosin proteins.


1987 ◽  
Vol 7 (9) ◽  
pp. 3084-3091 ◽  
Author(s):  
C C Karlik ◽  
D L Saville ◽  
E A Fyrberg

We have characterized two extant mutations of the flight muscle-specific act88F actin gene of Drosophila melanogaster. Both defective alleles were recovered from flightless mutants isolated previously (K. Mogami and Y. Hotta, Mol. Gen. Genet. 183:409-417, 1981). By directly sequencing the mutant alleles, we demonstrated that in act88FIfm(3)2 a single G-C to A-T transition converted arginine-28 to cysteine and that in act88FIfm(3)4 a single A-T to T-A transversion changed isoleucine-76 to phenylalanine. We showed that the actins encoded by either allele were strongly antimorphic. Mutant alleles effectively disrupted myofibril structure and function in the flight muscles of strains having the diploid complement of wild-type act88F genes. However, unlike antimorphic actins encoded by three previously characterized act88F alleles, neither that encoded by act88FIfm(3)2 nor that encoded by act88FIfm(3)4 was a strong inducer of heat shock protein synthesis.


Genome ◽  
2007 ◽  
Vol 50 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Sajesh Babu ◽  
Nallur B. Ramachandra

An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)RU8). In addition, we found 6 new complementation groups with strong defects in adult-muscle morphology; we named these ifm(2)RS1 to ifm(2)RS6. All mutant lines were mapped by meiotic recombination, and 5 of the 6 new complementation lines were mapped using chromosome deficiencies. ifm(2)RS1 maps to a region that harbors ifm(2)RU4 (a mutation that was isolated previously); however, theses are not alleles because each complements the other mutation, and the mutant-muscle phenotype is very different. We used direct screening under polarized light to find recessive mutations; although this method was labor intensive, it can be used to identify recessive genes involved in myogenesis, unlike screens for flightlessness or wing-position defects. This screen identifies regions on the second chromosome that harbor probable genes that are likely expressed in the mesoderm and are thought to be involved in myogenesis. This screen has generated valuable resources that will help us to understand the role of many molecular players involved in myogenesis.


1998 ◽  
Vol 201 (13) ◽  
pp. 2033-2044 ◽  
Author(s):  
J O Vigoreaux ◽  
C Hernandez ◽  
J Moore ◽  
G Ayer ◽  
D Maughan

We have developed a reverse-genetic approach to study the function of flightin, a unique protein of the flight muscle myofibril of Drosophila melanogaster. We describe the generation and characterization of Df(3L)fln1, a lethal genetic deficiency in the 76BE region of the third chromosome which deletes several genes, including the gene for flightin. We show that heterozygous flies harboring the Df(3L)fln1 mutation exhibit both impaired flight and ultrastructural defects in their flight muscle myofibrils. We found that the mutation does not interfere with assembly of the myofibril but leads to disorganization of peripheral myofilaments in adult myofibrils. Most myofibrils, nevertheless, retain an intact core that represents approximately 80 % of the normal lattice diameter. Mechanical analysis of single skinned flight muscle fibers demonstrates that the mutation has no significant effect on net power output but increases the frequency at which maximum power is delivered to the wings, potentially reducing the overall performance of the flight system. The results suggest that flightin is an indispensable part of the flight muscle contractile mechanism.


Sign in / Sign up

Export Citation Format

Share Document