scholarly journals Indirect flight muscles in Drosophila melanogaster as a tractable model to study muscle development and disease

2020 ◽  
Vol 64 (1-2-3) ◽  
pp. 167-173
Author(s):  
Saroj Jawkar ◽  
Upendra Nongthomba

Myogenesis is a complex multifactorial process leading to the formation of the adult muscle. An amalgamation of autonomous processes including myoblast fusion and myofibrillogenesis, as well as non-autonomous processes, such as innervations from neurons and precise connections with attachment sites, are responsible for successful development and function of muscles. In this review, we describe the development of the indirect flight muscles (IFMs) in Drosophila melanogaster, and highlight the use of the IFMs as a model for studying muscle development and disease, based on recent studies on the development and function of IFMs.

2019 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Sunil Prabhakar ◽  
Aman Aggarwal ◽  
K VijayRaghavan

AbstractIndirect Flight Muscles (IFMs) in adult Drosophila have served as a valuable model for studying muscle development. In terms of function, they provide the key power stroke in adult insect flight. Variability in their architecture including of fiber numbers, shape and arrangement may provide insightful clues into adult muscle function. Conventional histological preparations in imaging techniques severely limit exact morphometric analysis of flight muscles, thereby impeding causal or correlative studies between muscle morphology and function. In this study we employ MicroCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. We use this method to deliver precise measurements of a subset of IFMs, the Direct Longitudinal Muscles’ (DLMs) size and shape, in male and female Drosophila and changes therein, with age. Our findings reveal several unexpected characteristics of muscle fibers. We also demonstrate application to other insect species making it a valuable tool for histological analysis of insect biodiversity.Significance StatementAdult Drosophila muscles serve as models of homeostatic muscles. Accurate analysis of their form and function is key to understanding affects of genetic and physiological states on them. Recording adult muscle shape and volume has so far depended on protocols that inevitably distort tissue. Here, we use a MicroCT scanning based method that delivers changes in shape, size and organization between males and females, with time. This method is a significant step forward in recording muscle structure in situ with applications across species.


2019 ◽  
Author(s):  
Maria Paula Zappia ◽  
Lucia de Castro ◽  
Majd M. Ariss ◽  
Abul B.M.M.K. Islam ◽  
Maxim V Frolov

SummaryIn Drosophila, the wing disc-associated adult muscle precursors (AMPs) give rise to the fibrillar indirect flight muscles (IFM) and the tubular direct flight muscles (DFM). To understand early transcriptional events underlying this muscle diversification, we performed single cell RNA-sequencing experiments and built a cell atlas of AMPs associated with third instar larval wing disc. Our analysis identified distinct transcriptional signatures for IFM and DFM precursors that underlie the molecular basis of their divergence. The atlas further revealed various states of differentiation of AMPs, thus illustrating previously unappreciated spatial and temporal heterogeneity among them. We identified and validated novel markers for both IFM and DFM precursors at various states of differentiation by immunofluorescence and genetic tracing experiments. Finally, we performed a systematic genetic screen using a panel of markers from the reference cell atlas as an entry point and found a novel gene, Ama, which is functionally important in muscle development. Thus, our work provides a framework of leveraging scRNA-seq for gene discovery and therefore, this strategy can be applied to other scRNA-seq datasets.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1982
Author(s):  
Guillaume Bordet ◽  
Niraj Lodhi ◽  
Andrew Kossenkov ◽  
Alexei Tulin

An individual’s gene expression profile changes throughout their life. This change in gene expression is shaped by differences in physiological needs and functions between the younger and older organism. Despite intensive studies, the aging process is not fully understood, and several genes involved in this process may remain to be identified. Here we report a transcriptomic analysis of Drosophila melanogaster using microarrays. We compared the expression profiles of two-day-old female adult flies with those of 45-day-old flies. We identified 1184 genes with pronounced differences in expression level between young and old age groups. Most genes involved in muscle development/maintenance that display different levels of expression with age were downregulated in older flies. Many of these genes contributed to sarcomere formation and function. Several of these genes were functionally related to direct and indirect flight muscles; some of them were exclusively expressed in these muscles. Conversely, several genes involved in apoptosis processes were upregulated in aging flies. In addition, several genes involved in resistance to toxic chemicals were upregulated in aging flies, which is consistent with a global upregulation of the defense response system in aging flies. Finally, we randomly selected 12 genes among 232 genes with unknown function and generated transgenic flies expressing recombinant proteins fused with GFP protein to determine their subcellular expression. We also found that the knockdown of some of those 12 genes can affect the lifespan of flies.


1987 ◽  
Vol 7 (9) ◽  
pp. 3084-3091
Author(s):  
C C Karlik ◽  
D L Saville ◽  
E A Fyrberg

We have characterized two extant mutations of the flight muscle-specific act88F actin gene of Drosophila melanogaster. Both defective alleles were recovered from flightless mutants isolated previously (K. Mogami and Y. Hotta, Mol. Gen. Genet. 183:409-417, 1981). By directly sequencing the mutant alleles, we demonstrated that in act88FIfm(3)2 a single G-C to A-T transition converted arginine-28 to cysteine and that in act88FIfm(3)4 a single A-T to T-A transversion changed isoleucine-76 to phenylalanine. We showed that the actins encoded by either allele were strongly antimorphic. Mutant alleles effectively disrupted myofibril structure and function in the flight muscles of strains having the diploid complement of wild-type act88F genes. However, unlike antimorphic actins encoded by three previously characterized act88F alleles, neither that encoded by act88FIfm(3)2 nor that encoded by act88FIfm(3)4 was a strong inducer of heat shock protein synthesis.


Author(s):  
Juan José Pérez-Moreno ◽  
Carmen Santa-Cruz Mateos ◽  
María Dolores Martín-Bermudo ◽  
Beatriz Estrada

Muscle development is a multistep process that involves cell specification, myoblast fusion, myotube migration, and attachment to the tendons. In spite of great efforts trying to understand the basis of these events, little is known about the molecular mechanisms underlying myotube migration. Knowledge of the few molecular cues that guide this migration comes mainly from studies in Drosophila. The migratory process of Drosophila embryonic muscles involves a first phase of migration, where muscle progenitors migrate relative to each other, and a second phase, where myotubes migrate searching for their future attachment sites. During this phase, myotubes form extensive filopodia at their ends oriented preferentially toward their attachment sites. This myotube migration and the subsequent muscle attachment establishment are regulated by cell adhesion receptors, such as the conserved proteoglycan Kon-tiki/Perdido. Laminins have been shown to regulate the migratory behavior of many cell populations, but their role in myotube migration remains largely unexplored. Here, we show that laminins, previously implicated in muscle attachment, are indeed required for muscle migration to tendon cells. Furthermore, we find that laminins genetically interact with kon-tiki/perdido to control both myotube migration and attachment. All together, our results uncover a new role for the interaction between laminins and Kon-tiki/Perdido during Drosophila myogenesis. The identification of new players and molecular interactions underlying myotube migration broadens our understanding of muscle development and disease.


Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 151-164 ◽  
Author(s):  
R M Cripps ◽  
E Ball ◽  
M Stark ◽  
A Lawn ◽  
J C Sparrow

Abstract To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle.


1987 ◽  
Vol 7 (9) ◽  
pp. 3084-3091 ◽  
Author(s):  
C C Karlik ◽  
D L Saville ◽  
E A Fyrberg

We have characterized two extant mutations of the flight muscle-specific act88F actin gene of Drosophila melanogaster. Both defective alleles were recovered from flightless mutants isolated previously (K. Mogami and Y. Hotta, Mol. Gen. Genet. 183:409-417, 1981). By directly sequencing the mutant alleles, we demonstrated that in act88FIfm(3)2 a single G-C to A-T transition converted arginine-28 to cysteine and that in act88FIfm(3)4 a single A-T to T-A transversion changed isoleucine-76 to phenylalanine. We showed that the actins encoded by either allele were strongly antimorphic. Mutant alleles effectively disrupted myofibril structure and function in the flight muscles of strains having the diploid complement of wild-type act88F genes. However, unlike antimorphic actins encoded by three previously characterized act88F alleles, neither that encoded by act88FIfm(3)2 nor that encoded by act88FIfm(3)4 was a strong inducer of heat shock protein synthesis.


1998 ◽  
Vol 201 (13) ◽  
pp. 2033-2044 ◽  
Author(s):  
J O Vigoreaux ◽  
C Hernandez ◽  
J Moore ◽  
G Ayer ◽  
D Maughan

We have developed a reverse-genetic approach to study the function of flightin, a unique protein of the flight muscle myofibril of Drosophila melanogaster. We describe the generation and characterization of Df(3L)fln1, a lethal genetic deficiency in the 76BE region of the third chromosome which deletes several genes, including the gene for flightin. We show that heterozygous flies harboring the Df(3L)fln1 mutation exhibit both impaired flight and ultrastructural defects in their flight muscle myofibrils. We found that the mutation does not interfere with assembly of the myofibril but leads to disorganization of peripheral myofilaments in adult myofibrils. Most myofibrils, nevertheless, retain an intact core that represents approximately 80 % of the normal lattice diameter. Mechanical analysis of single skinned flight muscle fibers demonstrates that the mutation has no significant effect on net power output but increases the frequency at which maximum power is delivered to the wings, potentially reducing the overall performance of the flight system. The results suggest that flightin is an indispensable part of the flight muscle contractile mechanism.


Open Biology ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 190087 ◽  
Author(s):  
Dhananjay Chaturvedi ◽  
Sunil Prabhakar ◽  
Aman Aggarwal ◽  
Krishan B. Atreya ◽  
K. VijayRaghavan

Indirect flight muscles (IFMs) in adult Drosophila provide the key power stroke for wing beating. They also serve as a valuable model for studying muscle development. An age-dependent decline in Drosophila free flight has been documented, but its relation to gross muscle structure has not yet been explored satisfactorily. Such analyses are impeded by conventional histological preparations and imaging techniques that limit exact morphometry of flight muscles. In this study, we employ microCT scanning on a tissue preparation that retains muscle morphology under homeostatic conditions. Focusing on a subset of IFMs called the dorsal longitudinal muscles (DLMs), we find that DLM volumes increase with age, partially due to the increased separation between myofibrillar fascicles, in a sex-dependent manner. We have uncovered and quantified asymmetry in the size of these muscles on either side of the longitudinal midline. Measurements of this resolution and scale make substantive studies that test the connection between form and function possible. We also demonstrate the application of this method to other insect species making it a valuable tool for histological analysis of insect biodiversity.


Sign in / Sign up

Export Citation Format

Share Document