Temperature transients on engine combustion chamber walls—II. Geometry and general material property, including temperature-dependent, effects

1991 ◽  
Vol 33 (10) ◽  
pp. 793-803 ◽  
Author(s):  
Y. Rasihhan ◽  
F.J. Wallace
2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Chun Nam Wong ◽  
Yang Lu

In most of the existing stress-strength interference (SSI) models, stress and strength are assumed to be independent structural variants. However, under severe thermal conditions, such as in aeroengine combustion chamber, this assumption may not hold. One structural variant, such as strength, may become unilateral dependent on another variant, such as stress or temperature. In addition, to evaluate the discrete reliability of structures using unilateral dependent structural variants, discrete SSI models were developed using not just linear polynomial or line segments, but higher order polynomials. These models are based on the trivariant Lagrange factor polynomial approach. Normal distributed temperature dependent stress and Rayleigh distributed thermal stress dependent strength are represented by discrete structural variants that possess unilateral dependent probability mean functions. Based on their dependence formulations, the trivariant Lagrange factor polynomial of the discrete SSI model was generated. Applicability of this method was validated by a specific aeroengine combustion chamber cylinder using different molding alloys. Meanwhile the application range of some existing SSI models is extended for interval shifted data. Comparing machinability, reliability, and economic factors, 1Cr11MoV was the most suitable alloy in the design.


2018 ◽  
Vol 34 (6) ◽  
pp. 2806-2813
Author(s):  
Pappula Bridjesh ◽  
Pitchaipillai Periyasamy ◽  
Narayanan Kannaiyan Geetha

This experimental investigation is an endeavour to substitute diesel with WPO as fuel on a diesel engine. Enhancing the physiochemical properties of WPO or with hardware modifications on the engine, the performance of engine could not be improved up to the mark. The physiochemical properties of WPO are enhanced by the use of composite additive, which is a mixture of soy lecithin and 2-ethylhexyl nitrate and to improve the in-cylinder air motion; subsequently to increase the swirl and turbulence, standard hemispherical combustion chamber is modified to toroidal spherical grooves combustion chamber. The results of combined effect of modifying the combustion chamber and addition of composite additive suggest that improvements in engine-out emissions can be obtained from current diesel engines by enhancing physiochemical properties of fuel and matching geometry of combustion chamber. Engine combustion and emission characteristics under various loads for various fuels under test are as well studied.


1958 ◽  
Vol 62 (573) ◽  
pp. 654-658
Author(s):  
E. A. Simonis

The advent of the high altitude supersonic aircraft has brought in its train a whole host of complex control problems. As far as the engine manufacture is concerned, these are perhaps best indicated in the diagrammatic layout shown in Fig. 1It is not my intention however, to go into the question of multiplicity of controls and their proper co-ordination, nor will I venture into the abstruse province of stability. I should like instead to concentrate on the fuel system itself, i.e. the supply and control of fuel to the main engine combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document