scholarly journals Finite-element formulations for problems of large elastic-plastic deformation

1975 ◽  
Vol 11 (5) ◽  
pp. 601-616 ◽  
Author(s):  
R.M. McMeeking ◽  
J.R. Rice
2004 ◽  
Vol 126 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Young Sup Kang ◽  
Farshid Sadeghi ◽  
Mike R. Hoeprich

The objective of this study is to develop models to investigate the effects of contaminants (debris denting process) in heavily loaded rolling and sliding contacts. A dynamic time dependent finite element model (FEM) was developed to determine the elastic-plastic deformation and contact force generated between the mating surfaces and a spherical debris as debris passes through the contact region. The FEA model was used to obtain the effects of various parameters such as debris sizes, material properties, friction coefficients, applied loads, and surface speeds on the elastic-plastic deformation and contact force of the system. The FEM was used to predict debris and mating surfaces deformations as a function of debris size, material properties, friction coefficient, applied load, and surface speed. Using the FEM, a parametric study demonstrated that material properties (i.e., modulus of elasticity, yield strength, ultimate strength and Poisson’s ratio) and friction coefficients play significant roles on the height and width of dents on the mating surfaces. For lower friction coefficients μd<0.3 the debris and mating surfaces slip more easily relative to one another and therefore the debris has lower aspect ratio. As friction coefficient is increased the debris and mating surfaces stick to one another and therefore the debris deforms less and has higher aspect ratio. The results indicate that the pressure generated between the debris and mating surfaces is high enough to plastically deform the debris and mating surfaces and cause a permanent dent on the surfaces and cause residual stresses around the dent. Based on the FEM results, a dry contact model (DCM) was developed to allow similar analyses as the FEM, however, in significantly shorter computational time.


2004 ◽  
Vol 19 (12) ◽  
pp. 3641-3653 ◽  
Author(s):  
L. Kogut ◽  
K. Komvopoulos

A finite element analysis of frictionless indentation of an elastic–plastic half-space by a rigid sphere is presented and the deformation behavior during loading and unloading is examined in terms of the interference and elastic–plastic material properties. The analysis yields dimensionless constitutive relationships for the normal load, contact area, and mean contact pressure during loading for a wide range of material properties and interference ranging from the inception of yielding to the initiation of fully plastic deformation. The boundaries between elastic, elastic–plastic, and fully plastic deformation regimes are determined in terms of the interference, mean contact pressure, and reduced elastic modulus-to-yield strength ratio. Relationships for the hardness and associated interference versus elastic–plastic material properties and truncated contact radius are introduced, and the shape of the plastic zone and maximum equivalent plastic strain are interpreted in light of finite element results. The unloading response is examined to evaluate the validity of basic assumptions in traditional indentation approaches used to measure the hardness and reduced elastic modulus of materials. It is shown that knowledge of the deformation behavior under both loading and unloading conditions is essential for accurate determination of the true hardness and reduced elastic modulus. An iterative approach for determining the reduced elastic modulus, yield strength, and hardness from indentation experiments and finite element solutions is proposed as an alternative to the traditional method.


2012 ◽  
Vol 157-158 ◽  
pp. 833-838
Author(s):  
Fei Peng Guo ◽  
Bin Yao ◽  
Ke Hong

In this paper, a finite element analysis is used to predict accurately the elastic-plastic deformation of metal wire in roll-bended process; this method can transform the deflections of required rolling angle into the compensation of the CNC bending wire manufacture. The conclusion shows that the rolling angle keeps a linear relationship with the final forming angle in a certain range. And it has been proved to be correct and precise under certain conditions by the CNC roll-bended manufacture.


2017 ◽  
Vol 85 (2) ◽  
Author(s):  
Robert L. Jackson

The indentation of flat surfaces deforming in the plastic regime by various geometries has been well studied. However, there is relatively little work investigating cylinders indenting plastically deforming surfaces. This work presents a simple solution to a cylindrical rigid frictionless punch indenting a half-space considering only perfectly plastic deformation. This is achieved using an adjusted slip line theory. In addition, volume conservation, pileup and sink-in are neglected, but the model can be corrected to account for it. The results agree very well with elastic-plastic finite element predictions for an example using typical steel properties. The agreement does diminish for very large deformations but is still within 5% at a contact radius to cylinder radius ratio of 0.78. A method to account for strain hardening is also proposed by using an effective yield strength.


Sign in / Sign up

Export Citation Format

Share Document