Out-of-plane dynamic response of curved beams—An analytical model

1988 ◽  
Vol 24 (3) ◽  
pp. 271-284 ◽  
Author(s):  
Júlio M. Montalvão e Silva ◽  
António P.V. Urgueira
Author(s):  
R E Cornwell

There are numerous situations in machine component design in which curved beams with cross-sections of arbitrary geometry are loaded in the plane of curvature, i.e. in flexure. However, there is little guidance in the technical literature concerning how the shear stresses resulting from out-of-plane loading of these same components are effected by the component's curvature. The current literature on out-of-plane loading of curved members relates almost exclusively to the circular and rectangular cross-sections used in springs. This article extends the range of applicability of stress concentration factors for curved beams with circular and rectangular cross-sections and greatly expands the types of cross-sections for which stress concentration factors are available. Wahl's stress concentration factor for circular cross-sections, usually assumed only valid for spring indices above 3.0, is shown to be applicable for spring indices as low as 1.2. The theory applicable to the torsion of curved beams and its finite-element implementation are outlined. Results developed using the finite-element implementation agree with previously available data for circular and rectangular cross-sections while providing stress concentration factors for a wider variety of cross-section geometries and spring indices.


2013 ◽  
Vol 13 (01) ◽  
pp. 1350010 ◽  
Author(s):  
IOANNIS G. RAFTOYIANNIS ◽  
GEORGE T. MICHALTSOS

Telescopic cranes are usually steel beam systems carrying a load at the tip while comprising at least one constant and one moving part. In this work, an analytical model suitable for the dynamic analysis of telescopic cranes boom is presented. The system considered herein is composed — without losing generality — of two beams. The first one is a jut-out beam on which a variable in time force is moving with constant velocity and the second one is a cantilever with length varying in time that is subjected to its self-weight and a force at the tip also changing with time. As a result, the eigenfrequencies and modal shapes of the second beam are also varying in time. The theoretical formulation is based on a continuum approach employing the modal superposition technique. Various cases of telescopic cranes boom are studied and the analytical results obtained in this work are tabulated in the form of dynamic response diagrams.


Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 745
Author(s):  
Hany Hassanin ◽  
Alessandro Abena ◽  
Mahmoud Ahmed Elsayed ◽  
Khamis Essa

Auxetic structures have attracted attention in energy absorption applications owing to their improved shear modulus and enhanced resistance to indentation. On the other hand, four-dimensional (4D) printing is an emerging technology that is capable of 3D printing smart materials with additional functionality. This paper introduces the development of a NiTi negative-Poisson’s-ratio structure with superelasticity/shape memory capabilities for improved ballistic applications. An analytical model was initially used to optimize the geometrical parameters of a re-entrant auxetic structure. It was found that the re-entrant auxetic structure with a cell angle of −30° produced the highest Poisson’s ratio of −2.089. The 4D printing process using a powder bed fusion system was used to fabricate the optimized NiTi auxetic structure. The measured negative Poisson’s ratio of the fabricated auxetic structure was found in agreement with both the analytical model and the finite element simulation. A finite element model was developed to simulate the dynamic response of the optimized auxetic NiTi structure subjected to different projectile speeds. Three stages of the impact process describing the penetration of the top plate, auxetic structure, and bottom plate have been identified. The results show that the optimized auxetic structures affect the dynamic response of the projectile by getting denser toward the impact location. This helped to improve the energy absorbed per unit mass of the NiTi auxetic structure to about two times higher than that of the solid NiTi plate and five times higher than that of the solid conventional steel plate.


2014 ◽  
Vol 136 (4) ◽  
pp. 2141-2141 ◽  
Author(s):  
Hyun-Gwon Kil ◽  
Seonghoon Seo ◽  
Suk-Yoon Hong ◽  
Chan Lee

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Jason D. Fowlkes ◽  
Robert Winkler ◽  
Eva Mutunga ◽  
Philip D. Rack ◽  
Harald Plank

A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern—the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.


Sign in / Sign up

Export Citation Format

Share Document