A biomechanical analysis of the interrelationships of propulsive force, velocity, and stroke rate in the front crawl stroke

1982 ◽  
Vol 15 (4) ◽  
pp. 339
Author(s):  
T.M. Adams ◽  
R.A. Yeater ◽  
R.B. Martin
2013 ◽  
Vol 19 (4) ◽  
pp. 724-729 ◽  
Author(s):  
Marcos Franken ◽  
Fernando Diefenthaeler ◽  
Felipe Collares Moré ◽  
Ricardo Peterson Silveira ◽  
Flávio Antônio de Souza Castro

The purpose of this study was to investigate the critical stroke rate (CSR) compared to the average stroke rate (SR) when swimming at the critical speed (CS). Ten competitive swimmers performed five 200 m trials at different velocities relative to their CS (90, 95, 100, 103 and 105%) in front crawl. The CSR was significantly higher than the SR at 90% of the CS and lower at 105% of the CS. Stroke length (SL) at 103 and 105% of the CS were lower than the SL at 90, 95, and 100% of the CS. The combination of the CS and CSR concepts can be useful for improving both aerobic capacity/power and technique. CS and CSR could be used to reduce the SR and increase the SL, when swimming at the CS pace, or to increase the swimming speed when swimming at the CSR.


Author(s):  
Otávio Joaquim Baratto de Azevedo ◽  
Clara Knierim Correia ◽  
Gustavo Soares Pereira ◽  
Luciano Sales Prado ◽  
Helio Roesler ◽  
...  

1993 ◽  
Vol 9 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Kari L. Keskinen ◽  
Paavo V. Komi

The purpose of this study was to examine the differences in the relationships among the stroking characteristics between different phases of swimming exercises, and to determine whether these relationships would change in relation to enhanced swimming intensity. The experimental design consisted of the measurement of mean velocity (V), stroke rate (SR), stroke length (SL), and duration of different phases of a stroke cycle for each pool length in five to six 400-m swims and two 100-m swims. The results showed that the basic relationships among the stroke parameters during the test exercises were almost similar to those observed in competition. However, the relationships changed with enhanced swimming intensity. It is suggested that the degree of anaerobic lactacid metabolism may determine the characteristics of stroking while swimming. The reduction of SL above the lactate threshold would be connected to the accumulation of blood lactate, whereas SR would primarily be determined by the ability to maintain adequate neural activation.


2018 ◽  
Vol 13 (7) ◽  
pp. 897-902 ◽  
Author(s):  
Pedro G. Morouço ◽  
Tiago M. Barbosa ◽  
Raul Arellano ◽  
João P. Vilas-Boas

Context: In front-crawl swimming, the upper limbs perform alternating movements with the aim of achieving a continuous application of force in the water, leading to lower intracyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers’ evaluation. Purpose: To examine the assessment of intracyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Methods: A total of 22 high-level male swimmers performed a maximal-effort 50-m front-crawl time trial and a 30-s maximal-effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Results: Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (P < .001; d = 8.89). There were no differences in stroke rate or in physiological responses between tethered and free swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = −.826, P < .001) and a moderate negative nonlinear relationship with dv (r = .734, P < .01). With the addition of the maximum impulse to dF, multiple-regression analysis explained 83% of the free-swimming performance. Conclusions: Assessing dF is a promising approach for evaluating a swimmer’s performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.


2016 ◽  
Vol 11 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Natália M. Bassan ◽  
Tadeu E.A.S. César ◽  
Benedito S. Denadai ◽  
Camila C. Greco

Purpose:To analyze the relationship between the responses of isometric peak torque (IPT) and maximal rate of force development (RFDmax) with the changes in stroking parameters in an exhaustive exercise performed in front crawl.Methods:Fifteen male swimmers performed, on different days, the following protocols: maximal 400-m trial, strength tests before and after an exhaustive test at 100% of the mean speed obtained during the 400-m test, and the same procedures on day 2.Results:The IPT of elbow flexors (79.9 ± 19.4 and 66.7 ± 20.0 N·m) and elbow extensors (95.1 ± 28.0 N·m and 85.8 ± 30.5 N·m) was decreased after the swim test, as was RFDmax (521.8 ± 198.6 and 426.0 ± 229.9 N·m/s; 420.6 ± 168.2 and 384.0 ± 143.5 N·m/s, respectively). Stroke length decreased during the swim test (1.96 ± 0.22 and 1.68 ± 0.29 m/stroke), while stroke rate increased (37.2 ± 3.14 and 41.3 ± 4.32 strokes/min). The propulsive phases increased while the nonpropulsive phases decreased during the test. Significant correlation was found between the changes in IPT and stroke length, stroke rate and recovery (elbow flexors), and entry and catch phase (elbow extensors). In addition, significant correlation was found between the changes in RFDmax of elbow flexors with the changes in pull and recovery phases.Conclusion:Changes in swim technique during an exhaustive test can be, at least in part, associated with fatigue of the arm muscles.


2018 ◽  
Vol 34 (1) ◽  
pp. 53-64 ◽  
Author(s):  
David Simbaña Escobar ◽  
Philippe Hellard ◽  
David B. Pyne ◽  
Ludovic Seifert

To study the variability in stroking parameters between and within laps and individuals during competitions, we compared and modeled the changes of speed, stroke rate, and stroke length in 32 top-level male and female swimmers over 4 laps (L1–L4) in 200-m freestyle events using video-derived 2-dimensional direct linear transformation. For the whole group, speed was greater in L1, with significant decreases across L2, L3, and L4 (1.80 ± 0.10 vs 1.73 ± 0.08; 1.69 ± 0.09; 1.66 ± 0.09  · s−1,P < .05). This variability was attributed to a decrease in stroke length (L2: 2.43 ± 0.19 vs L4: 2.20 ± 0.13 m,P < .05) and an increase in stroke rate (L2: 42.8 ± 2.6 vs L4: 45.4 ± 2.3 stroke · min−1,P < .05). The coefficient of variation and the biological coefficient of variation in speed were greater for male versus female (3.9 ± 0.7 vs 3.1 ± 0.7; 2.9 ± 1.0 vs 2.6 ± 0.7,P < .05) and higher in L1 versus L2 (3.9 ± 1.3 vs 3.1 ± 0.1; 2.9 ± 0.9 vs 2.3 ± 0.7,P < .05). Intra-lap speed values were best represented by a cubic (n = 38), then linear (n = 37) and quadratic model (n = 8). The cubic fit was more frequent for males (43.8%) than females (15.6%), suggesting greater capacity to generate higher acceleration after the turn. The various stroking parameters managements within lap suggest that each swimmer adapts his/her behavior to the race constraints.


Sports ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 57
Author(s):  
Sara Ferreira ◽  
Diogo Carvalho ◽  
Ana Monteiro ◽  
J. Abraldes ◽  
J. Vilas-Boas ◽  
...  

Physiological responses related to 400-m front crawl performance were examined in a 11-week training macrocycle in children 11.6 ± 1.2 years old. Fourteen girls and twenty-nine boys completed a maximum intensity 400-m test, at the beginning (Τ1) and at the end of four weeks of general preparation (Τ2), four weeks of specific preparation (Τ3), and three weeks of the competitive period (Τ4). Blood lactate (La), blood glucose (Glu) and heart rate were measured post effort. Stroke rate (SR), stroke length (SL) and stroke index (SI) were measured during the test. The 400-m time was decreased at T2, T3, and T4 compared to T1 by 4.2 ± 4.9, 7.5 ± 7.0, and 8.6 ± 7.3% (p < 0.05) and at T3 and T4 compared to T2 by 3.1 ± 4.3 and 4.2 ± 4.6%, respectively (p < 0.05). La was not different between tests (p > 0.05) and Glu was decreased at T3 compared to other testing moments (p < 0.05). SR, SL, and SI were higher at T3 and T4 compared to T1 (p < 0.05). SL and SI were also increased at T4 compared to T2 (p < 0.05). Performance changes from T1 to T2 were related to SL and SI changes (r = 0.45 and 0.83, p < 0.05), and subsequent changes between T2 to T3 were related to SR, SI, La, and Glu changes (r = 0.48, 0.68, 0.34, and 0.42, p < 0.05). Performance change from T3 to T4 was related to SL, SI, and La modifications (r = 0.34, 0.70, and 0.53, p < 0.05). Performance gains may be related to various biomechanical or physiological changes according to training macrocycle structure.


2012 ◽  
Vol 34 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Daniel López-Plaza ◽  
Fernando Alacid ◽  
Pedro A. López-Miñarro ◽  
José M. Muyor

AbstractThe purpose of this study was to determine the influence of different sizes of hand paddles on kinematicparameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years)completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2),respectively. One video camera was used to record the performance during the three trials. The mean swimmingvelocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showedthat stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first andsecond 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05).Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyletrial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when handpaddles were worn.


Sign in / Sign up

Export Citation Format

Share Document