Critical layer thickness in AlGaAsSbGaSb heterostructures determined by X-ray diffraction

1993 ◽  
Vol 130 (1-2) ◽  
pp. 96-100 ◽  
Author(s):  
J.L. Lazzari ◽  
C. Fouillant ◽  
P. Grunberg ◽  
J.L. Leclercq ◽  
A. Joullié ◽  
...  
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Lars Lehmann ◽  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Thomas Lampke

Thick Cu−Sn alloy layers were produced in an [EMIM]Cl ionic-liquid solution from CuCl2 and SnCl2 in different ratios. All work, including the electrodeposition, took place outside the glovebox with a continuous argon stream over the electrolyte at 95 °C. The layer composition and layer thickness can be adjusted by the variation of the metal-salts content in the electrolyte. A layer with a thickness of up to 15 µm and a copper content of up to ωCu = 0.86 was obtained. The phase composition was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Furthermore, it was found that the relationship between the alloy composition and the concentration of the ions in the electrolyte is described as an irregular alloy system as according to Brenner. Brenner described such systems only for aqueous electrolytes containing complexing agents such as cyanide. In this work, it was confirmed that irregular alloy depositions also occur in [EMIM]Cl.


2012 ◽  
Vol 184-185 ◽  
pp. 1080-1083
Author(s):  
Jian Ling Yue ◽  
Wei Shi ◽  
Ge Yang Li

A series of VC/TiN nano-multilayer films with various TiN layer thicknesses were synthesized by magnetron sputtering method. The relationship between the modulation structure and superhardness effect of the multilayer films were investigated. The results reveal that TiN below a critical layer thickness grows coherently with VC layers in multilayers. Correspondingly, the hardness and elastic modulus of the multilayers increase significantly. The maximum hardness and modulus achieved in these multilayers is 40.7GPa and 328GPa.With further increase in the TiN layer thickness, coherent structure of multilayers are destroyed, resulting in a remarkable decrease of hardness and modulus. The superhardness effect of multilayers is related to the three directional strains generated from the coherent structure.


Sign in / Sign up

Export Citation Format

Share Document