scholarly journals Irregular Electrodeposition of Cu-Sn Alloy Coatings in [EMIM]Cl Outside the Glove Box with Large Layer Thickness

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 310
Author(s):  
Lars Lehmann ◽  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Thomas Lampke

Thick Cu−Sn alloy layers were produced in an [EMIM]Cl ionic-liquid solution from CuCl2 and SnCl2 in different ratios. All work, including the electrodeposition, took place outside the glovebox with a continuous argon stream over the electrolyte at 95 °C. The layer composition and layer thickness can be adjusted by the variation of the metal-salts content in the electrolyte. A layer with a thickness of up to 15 µm and a copper content of up to ωCu = 0.86 was obtained. The phase composition was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). Furthermore, it was found that the relationship between the alloy composition and the concentration of the ions in the electrolyte is described as an irregular alloy system as according to Brenner. Brenner described such systems only for aqueous electrolytes containing complexing agents such as cyanide. In this work, it was confirmed that irregular alloy depositions also occur in [EMIM]Cl.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


2012 ◽  
Vol 68 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Kohei Johmoto ◽  
Takashi Ishida ◽  
Akiko Sekine ◽  
Hidehiro Uekusa ◽  
Yuji Ohashi

The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.


2010 ◽  
Vol 74 (6) ◽  
pp. 943-950 ◽  
Author(s):  
L. M. Sochalski-Kolbus ◽  
R. J. Angel ◽  
F. Nestola

AbstractThe volumes of a disordered An20 (Qod = 0.15), a disordered An78 (Qod = 0.55) and an ordered An78 (Qod = 0.81) were determined up to 9.569(10) GPa, 8.693(5) GPa and 9.765(10) GPa, respectively, using single-crystal X-ray diffraction. The volume variations with pressure for these samples are described with 4th-order Birch Murnaghan equations of state with V0 = 669.88(7) Å3, K0 = 59.7(7) GPa. K′ = 5.7(5), K″ = −0.8(2) GPa−1 for disordered An20, V0 = 1340.48(10) Å3, K0 = 77.6(5) GPa, K0′ = 4.0(3), K″ = -0.59(9) GPa−1 for disordered An78 and V0 = 1339.62(6) A3, K0 = 77.4(6) GPa, K′ = 4.2(4), and K″ = −0.7(1) GPa−1 for ordered An78. Along with data from previous studies (An0 ordered, An0 disordered and An2o ordered), the volumes for the disordered samples were found to be up to ∼0.3% larger than the ordered samples of the same composition. The disordered samples are softer than the ordered samples of the same composition by 4(1)% for An0, 2.5(9)% for An20 and essentially zero for An78. The relationship between volume increase, density decrease, and decreasing bulk modulus with increasing disorder is in accordance with Birch's Law.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 476 ◽  
Author(s):  
Xuan-Dien Luong ◽  
Xuan-Truong Nguyen

A [O,N] bidentate π-expanded ligand system, (E)-1-(n-octylimino)methylpyren-2-ol (2), was newly synthesized via a six-step synthesis from pyrene. The ligand 2 reacts with [PtCl2(PhCN)2] in chlorobenzene and the presence of a base at reflux for 2 h under the formation of (2(Pt)) complex with a yield of 70%. The molecular structure of (2(Pt)), studied by common spectroscopic methods and X-ray diffraction, shows a square planar geometry with a trans-configuration of the ligands. The molecular structure, absorption spectra, electrochemical properties, and phosphorescence characteristics of the (2(Pt)) complex are discussed, emphasizing the comparison with those of the previously reported Pt complex (1(Pt)) containing the isomeric ligands of 2, (E)-2-(n-octylimino)methylpyren-1-ol. The DFT calculations of the two Pt complexes are carried out and exhibit a clear explanation of the relationship between their physico-chemical characteristics.


1985 ◽  
Vol 49 (350) ◽  
pp. 81-85 ◽  
Author(s):  
T. Sameshima ◽  
G. S. Henderson ◽  
P. M. Black ◽  
K. A. Rodgers

AbstractVivianite specimens from various world localities yield X-ray powder patterns of two types: one corresponds with that shown by synthetic Fe3(PO4)2· 8H2O and is not readily distinguished from that of barićite; the second shows reflections of monoclinic vivianite and triclinic metavivianite along with reflections of a bobierrite-type phase. The triclinic phase occurs as two twin-related lattices with twin plane 110 being the structural equivalent of 010 in the monoclinic phase. The relationship of the bobierrite-type lattice to the other two has not been established. The ternary pattern is produced by some coarse-grained vivianites on natural oxidation. Finer grained vivianites oxidise to an X-ray amorphous state without passing through a triclinic intermediate.


1988 ◽  
Vol 128 ◽  
Author(s):  
R. A. Roy ◽  
R. Petkie ◽  
D. S. Yee ◽  
J. Karasinski ◽  
A. Boulding

ABSTRACTThe modification of film stress in evaporated tungsten was studied as a function of deposition environment. Using concurrent ion bombardment of the growing film, the stress was seen to vary systematically with ion energy, ion flux, and substrate temperature. The qualitative behavior fits the model of stress modification developed for niobium films. X-ray diffraction was used to study the structure of the films, and a clear correlation between crystallographic texture and film stress is found. The original structure/impurity model for film stress modification due to ion bombardment has been modified to account for the relationship between film stress and texture.


Sign in / Sign up

Export Citation Format

Share Document